We introduce a model of Poisson random waves in S^2 and we study Quantitative Central Limit Theorems when both the rate of the Poisson process and the energy (i.e., frequency) of the waves (eigenfunctions) diverge to infinity. We consider finite dimensional distributions, harmonic coefficients and convergence in law in functional spaces, and we investigate carefully the interplay between the rate of divergence of eigenvalues and Poisson governing measures.
Spherical Poisson waves
Anna Paola Todino
2024-01-01
Abstract
We introduce a model of Poisson random waves in S^2 and we study Quantitative Central Limit Theorems when both the rate of the Poisson process and the energy (i.e., frequency) of the waves (eigenfunctions) diverge to infinity. We consider finite dimensional distributions, harmonic coefficients and convergence in law in functional spaces, and we investigate carefully the interplay between the rate of divergence of eigenvalues and Poisson governing measures.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
23-EJP1071.pdf
file disponibile agli utenti autorizzati
Descrizione: articolo su rivista
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
463.92 kB
Formato
Adobe PDF
|
463.92 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
poissonArxiv.pdf
file ad accesso aperto
Descrizione: articolo
Tipologia:
Documento in Pre-print
Licenza:
Dominio pubblico
Dimensione
312.96 kB
Formato
Adobe PDF
|
312.96 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.