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Abstract

We introduce a model of Poisson random waves in S
2 and we study Quan-

titative Central Limit Theorems when both the rate of the Poisson process
and the energy (i.e., frequency) of the waves (eigenfunctions) diverge to in-
finity. We consider finite-dimensional distributions, harmonic coefficients and
convergence in law in functional spaces, and we investigate carefully the in-
terplay between the rate of divergence of eigenvalues and Poisson governing
measures.
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1 Introduction

1.1 Motivations

The analysis of Gaussian eigenfunctions on different manifolds has recently become
a very attractive area of research - it started in the mathematics literature mainly
about a decade ago ([33, 43]) and it has then covered a number of different questions
and circumstances, including the Euclidean case (Berry’s Random Wave Model, see
[3, 4, 16, 35, 42]), Random Spherical Harmonics (eigenfunctions on the sphere, see
[11, 13, 12, 14, 29, 40]), Arithmetic Random Waves (eigenfunctions on the torus,
see [9, 10, 22, 25, 28, 37]) and other manifolds (see [15, 17, 38]). The leading
motivation for such a strong interest comes mainly from the physical sciences, and
in particular from an ansatz by Michael Berry in a 1977 paper [3], where he claimed
that Gaussian random waves could be taken as a universal model to approximate
the behaviour even of deterministic eigenfunctions in the high-energy limit (i.e., for
diverging eigenvalues) under ”generic” boundary conditions.
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A common argument to justify the universality of Gaussian behaviour for eigen-
functions in the physics literature is the random phase model (see [44] and the
references therein), which we can describe as follows. Working on R2, assume we
observe the superposition of N waves at a given frequency k, that is

Tk;N(x) =
1√
N

N∑

j=1

exp(ik 〈θj , x〉+ φj) , (1.1)

for x ∈ R2, k ∈ R+, where {θj}j=1,...,N are random directions on the unit circle and
{φj}j=1,...,N are random phases. By a standard Central Limit Theorem it is then
immediate to show that Tk;N(x) converges in distribution to a zero mean Gaussian

field T̃k(·) with covariance function given by

E

[
T̃k(x1)T̃k(x2)

]
= J0(k ‖x1 − x2‖2),

where J0 (·) is the Bessel function of order 0, given by

J0(u) =

∞∑

m=0

(−1)m
u2m

22m(m!)2
.

For a fixed value of the wavelength parameter, hence, the validity of a Central
Limit Theorem result follows from very standard arguments.

It should be noticed, however, that the literature on random eigenfunctions has
actually been developed under the implicit framework of a double asymptotic set-
ting. Indeed, on the one hand, a diverging number of random phases is taken to
ensure that the behaviour of random eigenfunctions is Gaussian; on the other hand,
Gaussianity is taken for granted when investigating the asymptotic behaviour of
random eigenfunctions in the high-frequency/high energy sense (i.e., for diverging
eigenvalues). Some natural questions are hence the following - given that Gaus-
sianity has been established for a fixed eigenvalue k, can we justify the use of this
assumption in the limit as k → ∞? Can we allow at the same time the eigenvalues
to grow together with the number of random phases, and still have a Central Limit
Theorem? Do we need some conditions that relate of the divergence for the eigen-
value k to the rate of divergence of the number of random phases N? How many
“random phases” do we need, in the language of Berry’s celebrated model, in order
for the Gaussian approximation to hold at high frequencies?

In this paper we try to address these questions in the case of random eigenfuctions
defined on the two-dimensional sphere S2; the choice of the sphere is motivated
by the fact that it represents the most interesting case from the point of view of
physical applications and it is known to exhibit the same covariance structure as
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the Euclidean case, in the scaling limit (due to so-called Hilb’s asymptotics, see [39,
Equation 8.21.7], and [43]). The extension of these results to the planar case does
not seem to pose any conceptual difficulties; it would be more interesting to explore
this setting in the case of Arithmetic Random Waves, which is known to exhibit
some differences with respect to Euclidean and Spherical circumstances. We leave
this extension for further research.

1.2 The model

Equation (1.1) shows that waves with random phases can actually be viewed as a su-
perposition of deterministic eigenfunctions centred on random locations {yj}j=1,...,N .
To achieve an analogous construction in the spherical case, we need to recall first
that the Laplacian operator in S2 is defined by

∆S2 :=
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
;

in the spherical case, a deterministic eigenfunction centred on y ∈ S2 can be con-
structed by

eℓ;y(·) : S2 → R , eℓ;y(·) :=
√

2ℓ+ 1

4π
Pℓ(〈·, y〉) ,

where we have introduced the family of Legendre polynomials

Pℓ(t) :=
1

2ℓℓ!

dℓ

dtℓ
(t2 − 1)ℓ , ℓ = 0, 1, 2, . . . ; t ∈ [0, 1] .

The choice of normalization ensures that Pℓ(1) ≡ 1 for all ℓ and moreover

‖eℓ;y‖L2(S2) =

∫

S2

2ℓ+ 1

4π
P 2
ℓ (〈x, y〉)dy = Pℓ(〈x, x〉) = 1 , (1.2)

in view of the duplication formula, see for instance, [27, Section 13.1.2]; also, we
have that {eℓ;y(·)} satisfies the Helmholtz equation

∆S2eℓ;y(x) + λℓeℓ;y(x) = 0 , ℓ = 0, 1, 2, ...,

where −λℓ = −ℓ(ℓ+1) is the sequence of eigenvalues of the spherical Laplacian, see
again [27, 43].

We convey the idea of random phases on the sphere by introducing a superpo-
sition of waves centred on Poisson distributed random points on S

2. Here is a more
formal setting. For a more rigorous definition of Poisson random measures, the
reader is referred to Section 3.1.
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Definition 1.1. The Poisson spherical random wave model (with rate νt) is defined
by

Tℓ;t(x) :=
1√
νt

∫

S2

√
2ℓ+ 1

4π
Pℓ(〈x, ξ〉)dNt(ξ),

where {Nt(·)} is a Poisson process on the sphere with governing intensity measure

E [Nt(A)] = νt × µ(A) for all A ∈ B(S2) ,

where µ is the Lebesgue measure on S2, see for further details Section 3.1 below.

Our model implies that for all measurable sets A ⊂ S2 and t ≥ 0, Nt(A) is a
Poisson random variable with expected value equal to νt×µ(A), and for A1∩A2 = ∅,
Nt(A1) and Nt(A2) are independent. We can also write the Poisson spherical wave
as

Tℓ;t(x) =
1√
νt

Nt(S2)∑

k=1

√
2ℓ+ 1

4π
Pℓ(〈x, ξk〉) ,

so that we can view spherical Poisson random waves as occuring from the sum of
a (random) number of deterministic waves, centred at points which are uniformly
distributed on the sphere.

It is now convenient to introduce the standard basis for the (2ℓ+1)-dimensional
space of eigenfunctions corresponding to the eigenvalue λℓ; the elements of the ba-
sis are sometimes called fully normalized spherical harmonics, and are defined as
the normalized eigenfunctions {Yℓm}m=−ℓ,...,ℓ which satisfy the further condition (in
spherical coordinates)

Yℓm : S2 → R ,
∂2

∂ϕ2
Yℓm(θ, ϕ) = −m2Yℓm(θ, ϕ) .

The elements of the real fully normalized spherical harmonics basis can be written
explicitly as the normalized product of the so-called Legendre associated function
Pm
ℓ : [−1, 1] 7→ R of degree ℓ and order m, which depends only on θ and is defined

by

Pm
ℓ (t) := (1− t2)m/2 d

m

dtm
Pℓ(t) , t ∈ [0, 1]

(see [27, Equation 13.7]), and a trigonometric function depending only on φ, that is,

Yℓm (θ, φ) =





√
2ℓ+1
2π

(ℓ−m)!
(ℓ+m)!

Pm
ℓ (cos θ) cos (mφ) for m ∈ {1, . . . , ℓ}√

2ℓ+1
4π
Pℓ (cos θ) for m = 0√

2ℓ+1
2π

(ℓ+m)!
(ℓ−m)!

P−m
ℓ (cos θ) sin (−mφ) for m ∈ {−ℓ, . . . ,−1}

,
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see, for example, [27, Remark 3.37].
It should be noted, however, that none of the results below depend on the specific

choice of our basis; they would hold unaltered for any orthonormal system. The most
important properties of the fully normalized spherical harmonics are the addition
and duplication formula (see respectively [27, Eq. (3.42) and Sec. 13.1.2]), which
are given respectively by

ℓ∑

m=−ℓ

Yℓm(x)Yℓm(y) =
2ℓ+ 1

4π
Pℓ(〈x, y〉) , (1.3)

∫

S2

2ℓ+ 1

4π
Pℓ(〈x, z〉)

2ℓ+ 1

4π
Pℓ(〈z, y〉)dz =

2ℓ+ 1

4π
Pℓ(〈x, y〉) , (1.4)

for all x, y ∈ S2. Using the addition formula yields

Tℓ;t(x) =
1√
νt

√
4π

2ℓ+ 1

Nt(S2)∑

k=1

ℓ∑

m=−ℓ

Yℓm(x)Yℓm(ξk) =

ℓ∑

m=−ℓ

âℓ,m(t)Yℓm(x),

where the random spherical harmonic coefficients {âℓ,m}m=−ℓ,...,ℓ are defined by

âℓ,m(t) :=

√
4π

(2ℓ+ 1)νt

Nt∑

k=1

Yℓm(ξk) ,

where {ξk} are the points charged by the Poisson process. Note that

E[âℓ,m(t)âℓ′,m′(t)] = δm
′

m δℓ
′

ℓ

4π

(2ℓ+ 1)

and
E[Tℓ;t(x)Tℓ;t(y)] = Pℓ(〈x, y〉) .

It is also easy to verify that the Parseval’s identity holds, i.e.

||Tℓ;t||2L2(S2) =

∫

S2

T 2
ℓ;t(x)dx =

ℓ∑

m=−ℓ

|âℓ,m(t)|2.

1.3 Overview of the main results

In this work, we consider the convergence in law of the Poisson random spherical
eigenfunctions to a Gaussian limit when both the rate of the Poisson process and
the eigenvalue sequence λℓ diverge to infinity; see for instance [21, 23, 24] and the
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references therein for some recent results on quantitative convergence bounds in a
Poisson framework. We focus on three different cases:

a) We study the convergence of the finite-dimensional distributions for a fixed ar-
ray of d-points (x1, x2, ..., xd) ∈ S2, with special emphasis on the univariate marginal
distribution for d = 1; here we prove that a quantitative Central Limit Theorem
holds insofar we have that d2

√
log ℓ = o(

√
νt). In particular, for the special case

d = 1 asymptotic Gaussianity holds for eigenvalues that increase polynomially fast
with respect to the rate of occurrence of Poisson events.

b) We also study the convergence in law for the vector of spherical harmonic
coefficients {âℓ,·}m=−ℓ,...,ℓ ; again a multivariate Central Limit Theorem would be
straightforward, but here we provide a quantitative version when ℓ (and hence the
dimension of the vector itself) grows with νt. The bound we obtain here is of or-

der
√

log ℓ
νt
, thus entailing that multivariate asymptotic Gaussianity holds provided

√
log ℓ = o(

√
νt). Out of this bound, it is also possible to derive an alternative rate

of convergence for finite-dimensional distributions of order d, which turns out to be
d
√
ℓ log ℓ/νt, see Remark 2.10. For fixed d, this is clearly worse than the bound we

discussed in the previous point, but it can actually be better if one envisages d as
growing with ℓ at a suitably fast rate.

c) We then consider functional convergence results, where we view the eigenfunc-
tions {Tℓ;t} as random elements Tℓ;t : Ω → L2(S2), i.e. as measurable applications
with the topology induced on L2(S2) by the standard metric

d2(f, g) := ‖f − g‖2L2(S2) =

∫

S2

|f(x)− g(x)|2dx .

Exploiting some very recent and important results by [6] (see also [5]), we are able
here to show that a quantitative Central Limit Theorem holds under the simple
condition that νt → ∞. This is apparently surprising, because in this functional
case it turns out that asymptotic Gaussianity will hold no matter how fast the
sequence of eigenvalues diverge to infinity, on the contrary of what we have stated
for the (apparently simpler) cases under b) and c). A careful inspection of the results
reveals that the apparent paradox is due to the topological structure induced by the
‖.‖L2(S2) , which is much coarser than the one given for instance, by the sup norm.
In particular, weak convergence with respect to ‖.‖L2(S2) does not entail convergence
of the finite-dimensional distributions, not even univariate ones.

d) Finally, we establish a quantitative Central Limit Theorem in functional
spaces which induce finer topologies; we focus in particular on Sobolev spaces (see

Theorem 2.12). Here, we are able to obtain the rate
√
π
(

1+
√

ℓ(ℓ+1)
)2α

2
√
νt

+
2π

(

1+
√

ℓ(ℓ+1)
)3α

√
νt

,

which is much worse than in both the L2 case and for marginal distributions. How-
ever, functional convergence in Sobolev spaces with sufficient regularity is, of course,
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a much stronger result; in particular, among others, it does imply convergence of the
finite-dimensional distributions at fixed locations on the sphere, as detailed below
in Section 2.3.2 , Corollary 2.13.

Remark 1.2. It is well-known (see [2, Corollary 1]) that convergence in L2(·) does
indeed entail pointwise convergence in the case of Reproducing Kernel Hilbert Spaces
(RKHS). Because the space of spherical eigenfunctions is indeed a RKHS, again the
point in c) may sound counterintuitive. There is a subtle point here, as ℓ increases,
we are actually dealing with a sequence of RKHS; whereas it is indeed possible to
bound the pointwise norm with the L2 distance up to a constant, the “constant”
does vary with ℓ, and indeed it diverges to infinity as we shall discuss below; so no
contradiction arises.

1.4 Some remarks on the nature of asymptotics

At this stage, it is important to add some remarks on the nature of our asymptotic
results. We note first that both the multipole index ℓ and the Poisson rate diverge
jointly to infinity in our framework ; for fixed multipoles ℓ, convergence to Gaussian-
ity remains true but becomes rather trivial and uninnteresting. As a consequence of
this double asymptotics framework, the covariance functions of the processes that
we study do not converge to the covariance of a well-defined, measurable function
on the sphere.

Indeed it is easy to see that for any choice of fixed points on the sphere the
covariance of our process converges to zero as ℓ→ ∞. This implies that the limiting
process (if it existed) would not be mean square continuous; but such a process
cannot be well-defined (i.e., measurable) as proved in [26].

However, this apparent difficulty allows us to exploit the full power of quanti-
tative central limit results. Indeed, this class of theorems does not require, by any
means, that the sequences converge to a well defined limiting distribution. One
can have two sequences of random variables Xn, Yn and show that dW (Xn, Yn) → 0
as n → ∞, meaning that we can approximate the distribution of Xn arbitrarily
well with the distribution of Yn, for n large enough, independently from the fact
that Xn converges or not to a limit distribution. For instance,Yn could be a se-
quence of Gaussian variables with oscillating mean and variance µYn

and σ2
Yn
, and

still one could use the Gaussian quantiles to approximate the distribution of Xn as
N(µYn

, σ2
Yn
). Very much the same can be said below, where the covariance operators

do not converge to meaningful limits. For ideas that are in a broad sense related,
one could also think about the large p, large n framework in random matrix theory
(see for instance [7, 8] where it is shown that under appropriate conditions, the laws
of large Wishart random matrices become indistinguishable from the laws of the
Gaussian orthogonal ensemble).
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For completeness, we add that it may be possible to get some form of non-
degenerate limiting behaviour for random waves: in particular, if neglecting the
spherical structure and focussing only on shrinking domains around a single fixed
point x ∈ S2, then it could be possible to show that the scaling limit of the waves
Tℓ when projected on the tangent plane converges locally to random eigenfunctions
on R2 (Berry’s random waves). The price to pay for this approach would however
be high: the result would no longer deal with convergence on the sphere, which is
what we are studying in this work. Moreover, this approach would not allow to
answer the question that we addressed here and that we consider interesting for
physical applications: given a random spherical harmonic Tℓ with ℓ suitably large,
what is the order of magnitude of the governing Poisson rate that is required for the
Gaussian approximation to be adequate? This is exactly the issue that we address
in the sequel, under a variety of different circumstances.
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2 Main Results

Before we proceed with the statement of our results, we need to recall briefly the
probability metrics that we are going to exploit, which are defined by

a) Wasserstein metric: for any two random vectors X, Y : Ω → Rd

dW (X, Y ) = sup
h∈Lip(1)

|E [h(X)]− E [h(Y )] | ,

h ∈ Lip(1) ⇔ h : Rd→R :M1(h) ≤ 1 .

where M1(h) is defined by

M1(h) := sup
x,y∈Rd,
x 6=y

|h(x)− h(y)|
||x− y||Rd

. (2.1)

b) d3 metric: for any two random vectors X, Y : Ω → Rd such that E||X||2
Rd,

E||Y ||2
Rd <∞,

d3(X, Y ) = sup
h∈I

|E [h(X)]− E [h(Y )] |

8



where I indicates the collection of all functions h ∈ C
3(Rd) such that ||h′′||∞ ≤ 1

and ||h′′′||∞ ≤ 1.
c) Functional d3 metric: for a general function space K we have that C3

b (K) is
the class of real-valued functions on K that have bounded Fréchet derivatives up to
order three. This space is equipped with the norm

||h||C3
b
(K) = sup

j=1,2,3
sup
x∈K

||Djh(x)||K⊗j .

Then, given a Hilbert space K and any two random elements X, Y : Ω → K

d3(X, Y ) = sup
h∈C3

b
(K)

|E [h(X)]− E [h(Y )] | .

Clearly b) can be viewed as a special case of c), for H = Rd. We refer to [34,
Appendix C] for more discussion and examples on probability metrics and their
mutual relationships.

We divide our results below in three subsections, referring respectively to finite-
dimensional distributions, harmonic coefficients and functional convergence.

2.1 Convergence of the finite dimensional distributions

We start from a simple univariate case; this is of course implied by the d-dimensional
result that we give below, but we prefer to treat it on its own for clarity of exposition
and to optimize the value of the relevant constants.

Theorem 2.1. (One-dimensional case) Let the notation above prevail and Z ∼
N (0, 1). For all x ∈ S

2 we have that

dW (Tℓ;t(x), Z) ≤
(√

3

2π2
+

2

3

√
3

2π3

)√
log ℓ

νt
+ o

(√
log ℓ

νt

)
.

Proof. Note first that, because Tℓ;t (x) =
1√
νt

∫
S2

√
2ℓ+1
4π

Pℓ (〈x, ξ〉) dNt(ξ) we are in the

domain of validity of Fourth Moment Theorems for integral functionals of Poisson
processes, see for instance [36] and many subsequent papers. In particular, we shall
exploit [19, Theorem 1.7], which we recall in Section 3.1 below, see Theorem 3.3. To
apply this result, we need to compute the fourth moment of Tℓ;t, which is given by

E[T 4
ℓ;t(x)] =

∑

m1m2m3m4

E[âℓ,m1(t) âℓ,m2(t)âℓ,m3(t) âℓ,m4(t)]Yℓm1(x)Yℓm2(x)Yℓm3(x)Yℓm4(x) ;

substituting the value of âℓ,m we have that

9



E[T 4
ℓ;t(x)] =

(
4π

νt(2ℓ+ 1)

)2 ℓ∑

m1,...m4=−ℓ

Nt(S2)∑

k1,...,k4=1

E[Ŷℓm1(ξk1)Ŷℓm2(ξk2)Ŷℓm3(ξk3)Ŷℓm4(ξk4)]

×Yℓm1(x)Yℓm2(x)Yℓm3(x)Yℓm4(x) .

Exploiting the addition formula (1.3) we get

E[T 4
ℓ;t(x)] =

(
2ℓ+ 1

4π

)2
1

ν2t
E




Nt(S2)∑

k1,...,k4=1

Pℓ(〈ξk1, x〉)Pℓ(〈ξk2, x〉)Pℓ(〈ξk3, x〉)Pℓ(〈ξk4, x〉)




=

(
2ℓ+ 1

4π

)2
1

ν2t

(
νtE

[
Pℓ(〈ξk1, x〉)4

]
+ 3ν2t E

[
Pℓ(〈ξk1, x〉)2

]2)
.

In [31, Lemma 2.3], it has been shown that

∫ 1

0

P 4
ℓ (t) dt ∼

3

2π2

log ℓ

ℓ2
,

where for any two positive sequences {aℓ, bℓ}ℓ=1,2,... we write

aℓ ∼ bℓ ⇔ lim
ℓ→∞

aℓ
bℓ

= 1 .

Thus we get

E
[
Pℓ(〈ξk1, x〉)4

]
=

∫

S2

Pℓ(〈z, x〉)4dz ∼ 4π
3

2π2

log ℓ

ℓ2
, as ℓ→ ∞ .

Moreover, since ∫ 1

0

Pℓ(t)
2 dt =

1

2ℓ+ 1
,

we also have that

E[Pℓ(〈ξk1, x〉)2] =
∫

S2

Pℓ(〈z, x〉)2dz =
4π

2ℓ+ 1
.

It follows that

E[T 4
ℓ;t(x)] = 3 +

3

2π3

log ℓ

νt
+ o

(
log ℓ

νt

)
.

Applying Theorem 3.3, the thesis of the theorem follows.
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Remark 2.2. (A Comparison with Needlet/Wavelet Coefficients) We note here
that the constraint on the rate of convergence of the eigenvalues with respect to the
rate in the Poisson governing intensity measure is very weak; Theorem 2.1 shows
that asymptotic Gaussianity will continue to hold even if we allow λℓ to grow as any
polynomial function of the rate νt. This is in sharp contrast with what is observed
in related circumstances for the behaviour of spherical wavelet/needlet coefficients
(see, for example, [20]). To compare those results with the ones presented here, we
recall that needlet coefficients corresponding to ξ ∈ S2 in the notation of this can be
considered as equivalent to (after normalization)

βj(ξ) :=
2j+1∑

ℓ=2j−1

b

(
ℓ

2j

)
Tℓ;t(ξ)

=
1√
νt

∫

S2

ψj(〈x, ξ〉)dNt(ξ) ,

ψj(〈x, ξ〉) :=
2j+1∑

ℓ=2j−1

b

(
ℓ

2j

)
2ℓ+ 1

4π
Pℓ(〈x, ξ〉) ,

where
{
b( ℓ

2j
)
}
ℓ=2j−1,...,2j+1 is a sequence of suitably constructed weights (see [32, 1]),

normalized here so that the coefficients have unit variance. It can be shown that (see
[20])

d3(βj(ξ), Z) = O



√

22j

νt


 = O



√
ℓ2j
νt


 , ℓj := 2j ,

so that asymptotic Gaussianity follows only for multipoles which grow sub-linearly
with respect to

√
νt. Heuristically, the kernel {ψj(〈ξ, .〉)} is characterized by a very

fast decay, as opposed to Legendre polynomials (see [32, 1]); its support can be
considered to shrink as ℓ−2

j , and hence the ”effective” Poisson rate behaves as ℓ−2
j ×νt.

This is very different from what we observe in this paper for Poisson random waves,
because as we mentioned above the support of Legendre polynomials does not shrink
in any similar way as ℓ grows, which makes asymptotic Gaussianity much simpler
to achieve.

In order to focus on the more general finite dimensional distributions case, we
need first to introduce some additional notation. Let us fix d points x1, x2, . . . , xd
on S

2 and introduce the random vector

Fd = (Tℓ;t(x1), Tℓ;t(x2), . . . , Tℓ;t(xd)) ; (2.2)

the elements of the covariance matrix of Fd, which we denote by Γd := Γ
(ℓ)
d (Fd), are

easily seen to be given by

Γd;ij := E[Tℓ;t(xi)Tℓ;t(xj)] = Pℓ(〈xi, xj〉) , i, j = 1, . . . , d .

11



Note that the elements on the diagonal Γd;ii, i = 1, . . . , d, are exactly equal to 1 (cf.
Eq. (1.2)).

Before we state our next result, some words on notation. Similarly to what
was done for the definition of Wasserstein distance, where the supremum was taken
with respect to Lipschitz functions with constant no larger than one, we might have
defined the d3(·, ·) distance with respect to a more definite class of functions, such
that the two factors M2(g),M3(g) are smaller than one (say). These constants are
explicitly given by

Mk(g) := sup
x 6=y

||Dk−1g(x)−Dk−1g(y)||op
||x− y||Rd

, k ∈ N, g ∈ Ck−1
(
R

d
)
,

where Dk−1g(x) is the (k−1)–th derivative of g at any point x ∈ Rd (see also Section
3.1). We also recall that for a vector x = (x1, . . . , xd)

T ∈ Rd, we denote by ||x||2 its
Euclidean norm and for a matrix A ∈ Rd×d, we denote by ||A||op the operator norm
induced by the Euclidean norm, i.e.,

||A||op := sup{||Ax||2 : ||x||2 = 1}.
We prefer however the current formulation which is more general and flexible,

although slightly more cumbersome. We write Zd for a Gaussian vector of dimension
d with zero mean and covariance matrix equal to Γd.

Theorem 2.3. We have that

d3(Fd, Zd) ≤ sup
g∈C3

B3(g; d)

√
3

2π3
d

√
log ℓ

νt
+ o

(
d2
√

log ℓ

νt

)

where

B3(g; d) :=

√
2d

4
M2(g) +

2d

9
M3(g) .

Proof. First of all we note that all the components of Fd belong to the same first-
order Poisson Wiener chaos and then we can apply Theorem 3.4. Moreover, from
Theorem 2.1 we have that

E[T 4
ℓ;t] = 3 +

3

2π3

log ℓ

νt
+ o

(
log ℓ

νt

)
.

Hence we obtain

|E[g(Fd)− E[g(Zd)]| ≤ B3(g; d)
d∑

i=1

(cum4(Fd;i))
1/2

∼ B3(g; d)

√
3

2π3

d∑

i=1

(
log ℓ

νt

)1/2

12



where Fd;i is the i-th component of the vector Fd and

B3(g; d) =

√
2d

4
M2(g) +

2
√
dTr(Γd)

9
M3(g).

We recall that for a zero mean random variable F , the fourth-cumulant cum4(F ) is
given by

cum4(F ) = E[F 4]− 3(E[F 2])2,

see for instance [34] for more discussions and details. Noting that Tr(Γd) = d, the
theorem is proved.

Remark 2.4. Note that we have established the bound

d3(F, Zd) = O

(
d2
√

log ℓ

νt

)
,

which holds when the dimension d grows with ℓ and νt.

2.2 Convergence of spherical harmonic coefficients

Let us consider the vector

Vℓ;t := (âℓ,−ℓ (t) , . . . , âℓ,ℓ(t)) = {âℓ,m(t)}m=−ℓ,...,ℓ ,

where

âℓ,m (t) =

√
4π

(2ℓ+ 1)

1√
νt

Nt∑

k=1

Yℓ,m(ξk) .

Observe that each entry of Vℓ;t is built by evaluating a different element of the fully
normalized spherical harmonic basis {Yℓm} over the same set of random points {ξk}.
As a consequence, the random coefficients are neither independent nor identically
distributed, although they are still uncorrelated; indeed we have that, for allm,m′ =
−ℓ, . . . , ℓ

E [âℓ,m (t)] =

∫

S2

Yℓm(z)dz = 0 ;

E [âℓ,m (t) âℓ,m′ (t)] =
4π

(2ℓ+ 1)

∫

S2

Yℓm(z)Yℓm′(z)dz

= δm
′

m

4π

(2ℓ+ 1)
. (2.3)

13



Theorem 2.5. Let Z2ℓ+1 be a Gaussian vector of dimension 2ℓ+ 1 with zero mean
and diagonal variance/covariance matrix equal to 4π

2ℓ+1
I2ℓ+1. Then we have that

d3(Vℓ;t, Z2ℓ+1) ≤ sup
g∈C3

B3(g; ℓ)

√
8
√
4π

1.539 log ℓ

ℓνt
+O

(
1

ℓνt

)
,

where

B3(g; ℓ) :=

√
2(2ℓ+ 1)

4
M2(g) +

2

9

√
(2ℓ+ 1)4πM3(g).

It should be noted that the resulting bound is of order
√

log ℓ
νt
. Before proving the

theorem we need some lemmas.

Lemma 2.6. We have that

E[â4ℓ,m(t)] =

(
4π

2ℓ+ 1

)2
1

νt
E
[
|Yℓm(ξ1)|4

]
+ 3

(
4π

2ℓ+ 1

)2

.

Remark 2.7. From [30], p. 23 we have:

E
[
Yℓm(ξ1)

4
]
=

(2ℓ+ 1)√
4π



∑

L

(
CL,0

ℓ,0;ℓ,0

)2 (
CL,0

ℓ,−m;ℓ,m

)2

2L+ 1


 ,

where {Cℓ3,m3

ℓ1,m1;ℓ2,m2
} are the Clebsch-Gordan coefficients, defined in Appendix 3.2 (see

[41] Chapter 8 and [27] p.77 cap.3.5).
Note that as ℓ→ ∞ we have (see p. 16 [30])

∑

L

(
CL,0

ℓ,0;ℓ,0

)4

2L+ 1
=

∫ 1

0

Pℓ(t)
4 dt ∼ 3

2π2

log ℓ

ℓ2
, (2.4)

Corollary 2.8. We have that

cum4(âℓ,m (t)) =
4π

√
4π

(2ℓ+ 1)

1

νt



∑

L

(
CL,0

ℓ,0;ℓ,0

)2 (
CL,0

ℓ,−m;ℓ,m

)2

2L+ 1




and as ℓ→ ∞

cum4(âℓ,0 (t)) =
4π

√
4π

(2ℓ+ 1)

1

νt

[
∑

L

{CL,0
ℓ,0;ℓ,0}4

2L+ 1

]

∼ 6√
π

log ℓ

ℓ3νt
.
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The first result of Corollary 2.8 follows by exploiting Remark 2.7 in Lemma 2.6
and recalling the definition of the fourth cumulant of a zero mean random variable.
The second result is due to (2.4).

We also need the following lemma.

Lemma 2.9. We have that

4π
√
4π

(2ℓ+ 1)2
1

νt
≤

ℓ∑

m=−ℓ

cum4(âℓ,m(t)) ≤ 8
√
4π

1.539 log ℓ

ℓ(2ℓ+ 1)νt
+O

(
1

ℓ2νt

)
(2.5)

Proof of Lemma 2.9. From Corollary 2.8 we get

ℓ∑

m=−ℓ

cum4(âℓ,m(t)) =

ℓ∑

m=−ℓ

4π
√
4π

(2ℓ+ 1)

1

νt

[∑

L

{CL,0
ℓ,0;ℓ,0}2{CL,0

ℓ,−m;ℓ,m}2
2L+ 1

]

=
4π

√
4π

(2ℓ+ 1)

1

νt

∑

L

{CL;0
ℓ,0;ℓ,0}2

2L+ 1

ℓ∑

m=−ℓ

{CL,0
ℓ,−m;ℓ,m}2.

In view of the unitary property (3.5) recalled in Appendix 3.2 (see for example eq.
(3.62) [27]), we have

ℓ∑

m=−ℓ

{CL,0
ℓ,−m;ℓ,m}2 = 1

and then we obtain

ℓ∑

m=−ℓ

cum4(âℓ,m(t)) =
4π

√
4π

(2ℓ+ 1)

1

νt

∑

L

{CL,0
ℓ,0;ℓ,0}2

2L+ 1
. (2.6)

The relation (3.3) between the Clebsch-Gordan coefficients and the 3j Wigner coef-
ficients (defined in Appendix 3.2), leads to

{CL,0
ℓ,0;ℓ,0}2

2L+ 1
=

(
ℓ ℓ L
0 0 0

)2

.

From Lemma A.1 in [31] we have that

(
ℓ ℓ L
0 0 0

)2

=
2

π
γℓL

1

L(2ℓ− L)1/2(2ℓ+ L)1/2
; (2.7)

where {γℓL}ℓ=1,2,... is a deterministic sequence such that 0.596 ≤ γℓL ≤ 1.539 uni-
formly in ℓ and L. Then

2ℓ∑

L=0

{CL,0
ℓ,0;ℓ,0}2

2L+ 1
= {C0,0

ℓ,0;ℓ,0}2 +
2ℓ−1∑

L=1

{CL,0
ℓ,0;ℓ,0}2

2L+ 1
+

{C2ℓ,0
ℓ,0;ℓ,0}2
4ℓ+ 1

.

15



In view of (3.7) and (3.8), the first and the last term of this sum are easily seen to
satisfy

{C0,0
ℓ,0;ℓ,0}2 =

1

2ℓ+ 1
,
{C2ℓ,0

ℓ,0;ℓ,0}2
4ℓ+ 1

≤ 1

(4ℓ+ 1)2
.

In view of (2.7), we also get

2ℓ−1∑

L=1

{CL,0
ℓ,0;ℓ,0}2

2L+ 1
=

2

π

2ℓ−1∑

L=1

γℓL
L(2ℓ− L)1/2(2ℓ+ L)1/2

.

Now we note that

2ℓ−1∑

L=1

1

L(2ℓ− L)1/2(2ℓ+ L)1/2
≤ 1

(2ℓ+ 1)1/2

2ℓ−1∑

L=1

1

L(2ℓ− L)1/2

=
1

(2ℓ+ 1)1/2

ℓ∑

L=1

1

L(2ℓ− L)1/2
+

1

(2ℓ+ 1)1/2

2ℓ−1∑

L=ℓ+1

1

L(2ℓ− L)1/2
. (2.8)

The first sum can be bounded as follows:

1

(2ℓ+ 1)1/2

ℓ∑

L=1

1

L(2ℓ− L)1/2
≤ 1

(2ℓ+ 1)1/2(ℓ)1/2

ℓ∑

L=1

1

L
≤ log ℓ

ℓ
.

For the second sum in (2.8) we have that

1

(2ℓ+ 1)1/2

2ℓ−1∑

L=ℓ+1

1

L(2ℓ− L)1/2
≤ 1

(2ℓ+ 1)1/2(ℓ+ 1)

2ℓ−1∑

L=ℓ+1

1

(2ℓ− L)1/2

and changing variable L′ = 2ℓ− L we get

1

(2ℓ+ 1)1/2(ℓ+ 1)

ℓ−1∑

L′=1

1

(L′1/2)
≤ 1

(2ℓ+ 1)1/2(ℓ+ 1)
(ℓ)1/2 ≤ 1

ℓ
.

Finally we have

2ℓ∑

L=0

{CL,0
ℓ,0;ℓ,0}2

2L+ 1
≤ 2

π

(
1.539 log ℓ

ℓ
+

1.539

ℓ
+

π

2(4ℓ+ 1)2
+

π

2(2ℓ+ 1)

)

and exploiting this bound in (2.6) we conclude that

ℓ∑

m=−ℓ

cum4(âℓ,m(t)) ≤ 8
√
4π

1.539 log ℓ

ℓ(2ℓ+ 1)νt
+ O

(
1

ℓ2νt

)
.
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On the other hand it can be easily seen that

ℓ∑

m=−ℓ

cum4(âℓ,m(t)) =
4π

√
4π

(2ℓ+ 1)

1

νt

∑

L

{CL,0
ℓ,0;ℓ,0}2

2L+ 1
≥ 4π

√
4π

(2ℓ+ 1)

1

νt
{C0,0

ℓ,0;ℓ,0}2

=
4π

√
4π

(2ℓ+ 1)

1

νt

1

2ℓ+ 1
=

4π
√
4π

(2ℓ+ 1)2
1

νt
,

where we used (3.7) in the second-last equality, and that leads to the thesis of the
lemma.

Proof of Theorem 2.5. We exploit the multidimensional Fourth Moment Theorem
in [19], in particular Theorem 3.4 in Section 3, to get

|E[g(Vℓ;t)]− E[g(Z2ℓ+1)]| ≤ B3(g; ℓ)
ℓ∑

m=−ℓ

√
cum4(âℓ,m (t)). (2.9)

Applying the following Cauchy-Schwarz inequality

d∑

i=1

√
ai ≤ d

1
2

(
d∑

i=1

ai

) 1
2

, (2.10)

it follows that

|E[g(Vℓ;t)]− E[g(Z2ℓ+1)]| ≤ B3(g; ℓ)
√
2ℓ+ 1

√√√√
ℓ∑

m=−ℓ

cum4(âℓ,m(t)). (2.11)

In view of the definition of B3(g; d) in (3.1) and using (2.3) we find

B3(g; ℓ) = A2(g; ℓ) +
2
√
(2ℓ+ 1)4π

9
M3(g) ,

with

A2(g; ℓ) =

√
2(2ℓ+ 1)

4
M2(g) .

Exploiting the upper bound of (2.5) in Lemma 2.9, the thesis of the theorem follows.

Remark 2.10. Since the covariance matrix of the vector Vℓ;t is positive definite, we
can also apply the second part of Theorem 3.4 in Section 3.1 to get a quantitative
Central Limit Theorem in terms of the metric d2, defined as follows. For any two
random vectors X, Y : Ω → Rd such that E[||X||2

Rd],E[||Y ||2Rd] <∞, we have that

d2(X, Y ) = sup
h∈I

|E[h(X)]− E[h(Y )]|

17



where I indicates the collection of all functions h ∈ C
2(Rd) such that ||h||Lip ≤ 1

and M2(h) ≤ 1.
Similarly to the proof of Theorem 2.5, we find

d2(Vℓ;t, Z2ℓ+1) ≤ sup
g∈C2

B2(g; ℓ)

√
8
√
4π

1.539 log ℓ

ℓνt
+O

(
1

ℓνt

)

where

B2(g; ℓ) = A1(g) +

√
2π

6

√
2ℓ+ 1M2(g) and A1(g) =

√
2ℓ+ 1

4π

1√
π
M1(g).

A natural question concerns the relationship between the results of this section
and the quantitative bounds for the convergence of the finite-dimensional distri-
butions provided in the previous pages. To this aim, we recall the definition of
Fd = (Tℓ;t(x1), ..., Tℓ;t(xd)) and we simply note that

Fd =



Yℓ,−ℓ(x1) Yℓ,−ℓ+1(x1) . . . Yℓ,ℓ(x1)

...
...

...
...

Yℓ,−ℓ(xd) Yℓ,−ℓ+1(xd) . . . Yℓ,ℓ(xd)






âℓ,−ℓ(t)

...
âℓ,ℓ(t)




=: Ψℓ;d(aℓ,·) ,

where Ψℓ;d : R2ℓ+1 → Rd is a linear function and hence obviously continuous (and

bounded). Indeed, because |Yℓ,m| ≤
√

2ℓ+1
2π

uniformly over the sphere, for all func-

tions h : Rd → R we can write

h(Tℓ;t(x1), ..., Tℓ;t(xd)) = h ◦Ψℓ;d(aℓ,·) =: h̃(aℓ,·) .

Hence we have that

sup
h∈C3

|E [h(Tℓ;t(x1), ..., Tℓ;t(xd))]− E [h(Z1, ..., Zd)] |

= sup
h∈C3

|E [(h ◦Ψℓ;d)(aℓ,·)]− E [(h ◦Ψℓ;d)(Z1, ..., Z2ℓ+1)] |

≤ sup
h∈C3

B3(h ◦Ψℓ;d)

√
8
√
4π

1.539 log ℓ

ℓνt
+O

(
1

ℓνt

)

where

B3(h ◦Ψℓ;d) =

√
2(2ℓ+ 1)

4
M2(h ◦Ψℓ;d) +

2

9

√
(2ℓ+ 1)4πM3(h ◦Ψℓ;d)

≤
√
2(2ℓ+ 1)

4

√
2ℓ+ 1

2π
dM2(h) +

2

9

√
(2ℓ+ 1)4π

√
2ℓ+ 1

2π
dM3(h)

= d
2ℓ+ 1

4
√
π
M2(h) +

2
√
2d

9
(2ℓ+ 1)M3(h) .
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Here we have used the simple fact that

sup
h:Rd→R

Mk(h ◦Ψℓ;d) ≤ d

√
2ℓ+ 1

2π
sup
h
Mk(h) , k ∈ N .

Summing up, we have here a bound of order d
√
ℓ log ℓ√
νt

, to be compared with the bound

of order d2
√

log ℓ
νt

which was obtained in Theorem 2.3. Overall, we can claim that

sup
h∈C3 , |h|

C3<1

|E [h(Tℓ;t(x1), ..., Tℓ;t(xd))]− E [h(Z1, ..., Zd)] |

= O

(
d× (

√
ℓ ∧ d)×

√
log ℓ

νt

)
.

2.3 Functional Convergence

In the previous subsections we presented a number of quantitative convergence re-
sults for sequences of random vectors, such as vectors of spherical harmonic coeffi-
cients or points evaluations over a subset of d points. It is natural to ask whether
we can also obtain results for the sequence of eigenfunctions {Tℓ,t(.)} considered
as random elements in functional spaces; the answer is affirmative, thanks to some
very recent results in this direction in [6]. We shall consider in particular L2(S2) and
the Sobolev space Wα,2(S

2), α > 0, to distinguish the probability metric in the two
cases, we shall write d3,L2(S2) and d3,Wα,2(S2), respectively. Let us recall also that for a
general function space K we have that C3

b (K) is the class of real-valued functions on
K that have bounded Fréchet derivatives up to order three. This space is equipped
with the norm

||h||C3
b
(K) = sup

j=1,2,3
sup
x∈K

||Djh(x)||K⊗j .

2.3.1 Quantitative Central Limit Theorems in L2(S2).

We start by considering the space of L2(S2). Our main result is the following.

Theorem 2.11. Let Z be a centred Gaussian process with the same covariance
operator as Tℓ;t. We have that

d3,L2(S2)(Tℓ;t, Z) ≤
(
1

4
+
√
π

)√
4π

νt

Proof. In view of Theorem 3.5 (see [6], Theorem 3 and Corollary 1), we need to
compute the quantity

E[‖Tℓ;t‖4L2(S2)]− (E[‖Tℓ;t‖2L2(S2)])
2 − 2 ‖Sℓ;t‖2HS(L2(S2)) ,
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where Sℓ;t is the covariance operator of Tℓ;t and || · ||HS denotes the Hilbert-Schmidt
norm (see the end of Appendix 3.1). First, we have that

E[||Tℓ;t||2L2(S2)] = E

[∫

S2

|Tℓ;t(x)|2 dx
]
=

∫

S2

ℓ∑

m1=−ℓ

ℓ∑

m2=−ℓ

E[âℓ,m1(t) âℓ,m2(t)]Yℓm1(x)Yℓm2(x) dx

=

∫

S2

4π

2ℓ+ 1

ℓ∑

m=−ℓ

Yℓm(x)Yℓm(x) dx

=
4π

2ℓ+ 1

ℓ∑

m=−ℓ

∫

S2

Yℓm(x)Yℓm(x)dx = 4π .

It follows that (E[||Tℓ;t||2L2(S2)])
2 = (4π)2. Now we compute E[||Tℓ;t||4L2(S2)], which

gives

E[||Tℓ;t||4L2(S2)] = E

[
||Tℓ;t||2L2(S2)||Tℓ;t||2L2(S2)

]
= E

[
ℓ∑

m1=−ℓ

|âℓ,m1(t)|2
ℓ∑

m2=−ℓ

|âℓ,m2(t)|2
]

=

(
4π

(2ℓ+ 1)νt

)2

E

[
ℓ∑

m1=−ℓ

∑

k1k2

Yℓm1(ξk1)Yℓm1(ξk2)
ℓ∑

m2=−ℓ

∑

k3k4

Yℓm2(ξk3)Yℓm2(ξk4)

]
.

Applying the addition formula we get

E[||Tℓ;t||4L2(S2)] =

(
1

νt

)2

E



Nt(S2)∑

k1=1

Nt(S2)∑

k2=1

Pℓ(〈ξk1, ξk2〉)
Nt(S2)∑

k3=1

Nt(S2)∑

k4=1

Pℓ(〈ξk3, ξk4〉)




=

(
1

νt

)2

E



Nt(S2)∑

k1=1

Pℓ(〈ξk1, ξk1〉)2



+

(
1

νt

)2

E

[
∑

k1=k2 6=k3=k4

Pℓ(〈ξk1, ξk2〉)Pℓ(〈ξk3, ξk4〉)
]

+

(
1

νt

)2

E

[
∑

k1=k3 6=k2=k4

Pℓ(〈ξk1, ξk2〉)Pℓ(〈ξk3, ξk4〉)
]

+

(
1

νt

)2

E

[
∑

k1=k4 6=k3=k2

Pℓ(〈ξk1, ξk2〉)Pℓ(〈ξk3, ξk4〉)
]
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and since Pℓ(0) = 1 for all ℓ we obtain

E[||Tℓ;t||4L2(S2)] =

(
1

νt

)2

E



Nt(S2)∑

k1=1

1


+

(
1

νt

)2

E

[
∑

k1=k2 6=k3=k4

1

]

+2

(
1

νt

)2

E

[
∑

k1=k3 6=k2=k4

Pℓ(〈ξk1, ξk2〉)2
]

=
4π

νt
+ (4π)2

(
1

νt

)2

ν2t +

(
1

νt

)2

2ν2t

∫

(S2)2
Pℓ(〈ξk1, ξk2〉)2 dξk1 dξk2

=
4π

νt
+ (4π)2 + 2(4π)

4π

2ℓ+ 1
.

The covariance operator Sℓ;t is such that

||Sℓ;t||2HS(L2(S2)) =
ℓ∑

m=−ℓ

ℓ∑

m′=−ℓ

E[aℓ,m(t)aℓ,m′(t)]2 =
ℓ∑

m=−ℓ

ℓ∑

m′=−ℓ

(
δm

′

m

4π

2ℓ+ 1

)2

=
(4π)2

2ℓ+ 1
,

and then we finally obtain

E[‖Tℓ;t‖4L2(S2)]− (E[‖Tℓ;t‖2L2(S2)])
2 − 2 ‖Sℓ;t‖HS(L2(S2))

=
4π

νt
+ (4π)2 + 2

(4π)2

2ℓ+ 1
− (4π)2 − 2

(4π)2

2ℓ+ 1
=

4π

νt
.

Exploiting Theorem 3.5 (see also [6]) we get the thesis of the theorem.

As mentioned above, it may come at first sight as a surprise that the rate of
convergence in this functional setting (i.e., 1/

√
νt) does not depend on the index ℓ

and it is indeed faster than in the finite-dimensional case. The apparent paradox
is solved noting that the topology here is too coarse to imply convergence of the
finite-dimensional distributions. In the next subsection, we investigate convergence
in functional spaces with a finer topological structure.

2.3.2 Quantitative Central Limit Theorems in Wα,2(S
2).

Now we consider the random eigenfunctions taking values in Sobolev spacesWα,2(S
2),

α > 0, on the sphere, i.e., the spaces of functions f ∈ L(S2), f =
∑

ℓ,m aℓ,mYℓ,m,
with finite norm

‖f‖2Wα,2(S2)
=
∑

ℓ≥0

ℓ∑

m=−ℓ

(
1 +

√
ℓ(ℓ+ 1)

)2α
|aℓ,m|2 .

Our main result here is the following.
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Theorem 2.12. Let Z be a centred Gaussian process with the same covariance
operator as Tℓ;t. We have that

d3,Wα,2(Tℓ;t, Z) ≤
√
π
(
1 +

√
ℓ(ℓ+ 1)

)2α

2
√
νt

+
2π
(
1 +

√
ℓ(ℓ+ 1)

)3α

√
νt

.

Proof. First note that

E

[
‖Tℓ;t‖4Wα,2(S2)

]
=
(
1 +

√
ℓ(ℓ+ 1)

)4α
E

[
||Tℓ;t||4L2(S2)

]

and

E

[
‖Tℓ;t‖2Wα,2(S2)

]
=
(
1 +

√
ℓ(ℓ+ 1)

)2α
E

[
||Tℓ;t||2L2(S2)

]
. (2.12)

Indeed, we have that

E

[
‖Tℓ;t‖4Wα,2(S2)

]
= E

[
‖Tℓ;t‖2Wα,2(S2)

‖Tℓ;t‖2Wα,2(S2)

]

= E

[
ℓ∑

m=−ℓ

ℓ∑

m′=−ℓ

(
1 +

√
ℓ(ℓ+ 1)

)4α
|âℓ,m|2 |âℓ,m′ |2

]

=
(
1 +

√
ℓ(ℓ+ 1)

)4α
E

[
ℓ∑

m=−ℓ

ℓ∑

m′=−ℓ

|âℓ,m|2 |âℓ,m′ |2
]

=
(
1 +

√
ℓ(ℓ+ 1)

)4α
E

[
||Tℓ;t||4L2(S2)

]
,

where in the last equation we used Parseval’s identity. Similarly (2.12) holds. In
view of the computations of the previous section and this remark, we conclude that

E

[
‖Tℓ;t‖4Wα,2(S2)

]
=
(
1 +

√
ℓ(ℓ+ 1)

)4α(4π

νt
+ (4π)2 + 2(4π)

4π

2ℓ+ 1

)

and

E

[
‖Tℓ;t‖2Wα,2(S2)

]
= 4π

(
1 +

√
ℓ(ℓ+ 1)

)2α
.

Furthermore, letting {ei : i ≥ 1} be an orthonormal basis of Wα,2(S
2), we can com-
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pute ‖Sℓ;t‖2HS(Wα,2)
as

‖Sℓ;t‖2HS(Wα,2)
=
∑

i≥1

∥∥∥E
(
〈Tℓ;t, ei〉Wα,2(S2)

Tℓ;t

)∥∥∥
2

Wα,2(S2)

=
∑

i≥1

∥∥∥∥∥

ℓ∑

m=−ℓ

E
(
âℓ,m(t)

2
)
〈Yℓm, ei〉Wα,2(S2)

Yℓm

∥∥∥∥∥

2

Wα,2(S2)

=
ℓ∑

m=−ℓ

(
1 +

√
ℓ(ℓ+ 1)

)2α( 4π

2ℓ+ 1

)2∑

i≥1

〈Yℓm, ei〉2Wα,2(S2)

=
ℓ∑

m=−ℓ

(
1 +

√
ℓ(ℓ+ 1)

)4α( 4π

2ℓ+ 1

)2

=
(
1 +

√
ℓ(ℓ+ 1)

)4α (4π)2

2ℓ+ 1
.

We now have all the necessary elements to apply Theorem 3.5 as in the previous
subsection, from which the result follows after elementary algebraic manipulations.

As a final result we want to show that, for α > 3
2
, a quantitative Central Limit

Theorem in Sobolev space does indeed imply the quantitative Central Limit Theo-
rem for the marginal distribution at every given location on the sphere. We start
by noting that

‖f‖L∞(S2) = sup
x

|
∑

ℓ

∑

m

aℓm(f)Yℓm(x)|

≤
∑

ℓ

∑

m

|aℓm(f)| sup
x

|Yℓm(x)|

≤
∑

ℓ

∑

m

|aℓm(f)|
√

2ℓ+ 1

2π
,

whence

‖f‖2L∞(S2) ≤ 1

2π

{
∑

ℓ

∑

m

|aℓm(f)|
√
2ℓ+ 1

}2

.

Multiplying and dividing by (1+
√
ℓ(ℓ+ 1))α

√
2ℓ+ 1 and then applying the Cauchy-
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Schwarz inequality twice, we get

‖f‖2L∞(S2) ≤ 1

2π

∑

ℓ

(2ℓ+ 1)
∑

m

|aℓm(f)|2
(1 +

√
ℓ(ℓ+ 1))2α

(2ℓ+ 1)

∑

ℓ

(2ℓ+ 1)2

(1 +
√
ℓ(ℓ+ 1))2α

=
1

2π
||f ||2Wα,2(S2)

∑

ℓ

(2ℓ+ 1)2

(1 +
√
ℓ(ℓ+ 1))2α

≤ 2

π
||f ||2Wα,2(S2)

ζ(2α− 2),

where as usual

ζ(2α− 2) =
∞∑

ℓ=1

1

ℓ2α−2
<∞

as α > 3
2
. Hence, we have that

‖f‖2L∞(S2) <
2

π
ζ(2α− 2)× ‖f‖2Wα,2(S2)

.

Because of this inequality, the topology induced by the norm ‖.‖Wα,2(S2)
is finer than

the topology generated by ‖.‖L∞(S2); hence a function continuous with respect to
the latter is certainly continuous with respect to the former as well. Therefore

sup
h continuous w.r.t. ‖.‖

L∞(S2)

|Eh(X)−Eh(Y )| ≤ sup
h continuous w.r.t. ‖·‖

Wα,2(S
2)

|Eh(X)−Eh(Y )| .

Now we show that d3,Wα,2(Xℓ, Zℓ) → 0 implies

Eg(Xℓ(x)) → Eg(Zℓ(x)) for all g ∈ C3
b (R) ,

for fixed x ∈ S2, which in turn implies Xℓ(x) →d N(0, 1) because d3 metrizes
convergence in distribution, in particular on R. Actually we show the following,
slighlty stronger result.

Corollary 2.13. For α > 3
2
, we have that

d3(Xℓ(x), Zℓ(x)) = sup
g∈C3

b
(R)

|Eg(Xℓ(x))− Eg(Zℓ(x))| ≤ C(α)d3,Wα,2(Xℓ, Zℓ) ,

where the term C(α) does not depend on ℓ.

Proof. We can write

Eg(Xℓ(x)) = E(g ◦ πx(Xℓ(.))) where g ◦ πx ∈ Cb ,
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where the evaluation map πx : πx(Xℓ) = Xℓ(x) is continuous with respect to the
Sobolev norm (because it is continuous with respect to the sup norm).

Note that the Gateaux derivatives of the evaluation functionals are given by

|πx(Xℓ + tH)− πx(Xℓ)|
t

= H(x) = πx(H) , ∀ H ∈ Wα,2 ,

so that the Fréchet derivative ((Dπx)(Xℓ))H = H(x), that is ((Dπx)(Xℓ)) = πx.
Note also that the (dual) norm of πx is bounded, indeed by its definition we have
that

‖πx(.)‖W ∗
α,2

: = sup
h:‖h‖Wα,2

=1

|πx(h)| = sup
h

|h(x)|
‖h‖Wα,2(S2)

≤ sup
h

‖h‖L∞(S2)

‖h‖Wα,2(S2)

≤ 2

π
ζ(2α− 2) .

Similar results are obtained if we take the second or third order Fréchet derivatives,
with the same bound. Therefore we have that

d3(Xℓ(x), Zℓ(x)) = sup
g∈C3

b
(R)

|Eg(Xℓ(x))− Eg(Zℓ(x))| ≤ C(α)d3,W2,α(Xℓ, Zℓ),

which proves the claim with C(α) := 2
π
ζ(2α− 2).

3 Appendix

In this Appendix, we collect for convenience a number of background results on
Fourth Moment Theorems in a Poisson environment and on integrals of spherical
harmonics. We start introducing some notation and definitions.

3.1 Wiener chaos in a Poisson environment

We now present, in a form properly adapted to our goals, some upper bounds related
to random variables living in the first Wiener chaos of a Poisson random measure.
The first two bounds have been proved in [19] and provide a Fourth Moment Theo-
rem on the Poisson space for the univariate and the multivariate case respectively.
The third bound appears in [6] and concerns a quantitative and functional Central
Limit Theorem for convergence to a Gaussian process.
We start by recalling some basic concepts on Poisson random measures and Wiener
chaos. Assuming that we are working on a suitable probability space, (Ω,F , P ), the
following definition is standard:
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Definition 3.1 (Poisson random measure). Let (Θ,A, ρ) be a σ-finite measure
space, such that ρ has no atoms. A Poisson random measure on Θ with intensity
measure ρ is a collection of random variables {N(A) : A ∈ A}, taking values in the
space Z+ ∪ {∞}, characterized by the following two properties:

1. for every A ∈ A, N(A) has Poisson distribution with intensity ρ(A);

2. for A1, . . . , An ∈ A pairwise disjoint, N(A1), . . . , N(An) are independent.

The centred Poisson random measure N̂ is defined by N̂ := N − ρ.

From now on, for the sake of brevity, we will make use of the shorthand notation
Lp (ρ) to denote the Lebesgue space Lp (Θ,A, ρ), while, for p ≥ 2, we will denote
with Lp

s (ρ) ⊂ Lp (ρ) the subspace of symmetric functions.

Definition 3.2 (Wiener–Itô integrals and first Wiener chaos). For every determin-
istic function h ∈ L2

2 (ρ), the Wiener–Itô integral of h with respect to N̂ is given
by

I1 (h) =

∫

Θ

h (z) N̂ (dz) .

The Hilbert space composed of the random variables of the form I1 (h), where h ∈
L2
s (ρ), and labeled by W1, is called the first Wiener chaos associated with the

Poisson measure N .

In this paper, we choose Θ = R+ × S2, while A is the class of Borel subsets of
Θ, labeled by B(Θ). We denote with Nt a Poisson random measure on Θ, whose
intensity is given by the product measure ρ = λ × µ. The first term, which can
be read as the time component, is given by λ (ds) = ν × ℓ(ds), where ν > 0 is a
fixed parameter, while ℓ is the Lebesgue measure, so that for any t ∈ R, λ ([0, t]) :=
ν × t = νt. Regarding the spherical component, µ is assumed to be a probability
measure on S2, associated to a density f so that µ(dx) = f(x)dx. Given this
setting, we will denote by Nt, t > 0, the Poisson measure on (S2,B (S2)) defined by
Nt (B) := N ([0, t]× B), B ∈ B (S2) with intensity µt = νt × µ.

Theorem 3.3. [Quantitative Fourth Moment Theorem (unidimensional case), [19,
Theorem 2.1 and Corollary 1.3] and [18, Theorem 1.3]] For ℓ ∈ N, let F ∈ W1,
while Z ∼ N (0, 1) denote a standard normal random variable. Moreover, assume
that V ar(F ) = 1 and E[F 4] <∞. Then it holds that:

dW (F, Z) ≤ c1
√
E[F 4]− 3,

where

c1 :=
1√
2π

+
2

3
.
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Moreover, it holds that

dKol(F,N) ≤
(
11 + (E[F 4])1/2 + (E[F 4])1/4

)√
E[F 4]− 3.

Before stating the next result, we need some additional notation. For any ℓ ∈ N,
fixed an integer d ≥ 2, we consider the centred random vector F = (F1, . . . , Fd)

T

where Fj ∈ W1, for 1 ≤ j ≤ d. For j = 1, . . . , d. We denote by Γd the covariance
matrix of F , i.e. Γd;ij = E[FiFj] for i, j = 1, . . . , d.
For a k−multilinear form ψ : (Rd)k → R, k ∈ N, we define the operator norm

||ψ||op := sup{|ψ(u1, . . . , uk)| : uj ∈ R
d, ||uj||2 = 1, j = 1, . . . , k}.

Furthermore, note that Dk−1g(x), the (k− 1)–derivative of g at the point x, can be
read as a multilinear form. In this setting, we can define the generalization of the
minimum Lipschitz constant for any derivative of order k−1 as follows: fixed k ≥ 1
and chosen g ∈ Ck−1

(
Rd
)
, take

Mk(g) := sup
x 6=y

||Dk−1g(x)−Dk−1g(y)||op
||x− y||Rd

,

see again [19].

Theorem 3.4. [Quantitative Fourth Moment Theorem (multidimensional case),
[19, Theorem 1.7, Corollary 1.8 and Remark 4.3]] Under the above notation, let
Zd be a centred Gaussian random vector of dimension d with covariance matrix Γd.
Then, for every g ∈ C3(Rd), we have that

|E[g(F )]− E[g(Zd)]| ≤ B3(g; d)

d∑

i=1

√
E[F 4

i ]− 3E[F 2
i ]

2

where

B3(g; d) = A2(g; d) +
2
√
dTr(Γd)

9
M3(g) , A2(g; d) =

√
2d

4
M2(g) . (3.1)

If in addition Γd is positive definite, then for every g ∈ C2(Rd), it holds that

|E[g(F )]− E[g(Z)]| ≤ B2(g; d)
d∑

i=1

√
E[F 4

i ]− 3E[F 2
i ]

2

with

B2(g; d) = A1(g; d) +

√
2π||Γ− 1

2
d ||opTr(Γd)

6
M2(g) , A1(g; d) =

||Γ− 1
2

d ||op√
π

M1(g) .
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Let K be a separable Hilbert space and X a K−valued random variable in
L2(ρ). We recall that if X ∈ L2(ρ), with E

[
||X||2K

]
< ∞, the covariance operator

S : K → K of X is defined by

Su = E[〈X, u〉KX ].

S is a positive, self-adjoint trace-class operator that verifies the identity

TrS = E[||X||2K ].

We consider the Banach space of all trace-class operators on K, equipped with
norm Tr|A|, where |A| =

√
A∗A and A∗ denotes the adjoint of A. The subspace

of Hilbert-Schmidt operators on K is denoted by HS(K), associated to the norm
||A||HS(K) =

√
Tr(AA∗), A ∈ HS(K).

Now, assume that X is a K−valued random variable which belongs to the first
Wiener chaos with finite fourth moment, i.e. E[||X||4K] < ∞, and with covariance
operator S. We denote by Z a Gaussian process taking values in the same separable
Hilbert space as X and having the same covariance operator S. The following result
holds.

Theorem 3.5. [Functional Quantitative Fourth Moment Theorem, [6, Theorem 3
and Corollary 1]] Under the above notation and assumptions, it holds that

d3(X,Z) ≤
(
1

4
+

1

2

√
E[||X||2K]

)√
E[||X||4K]− E[||X||2K]2 − 2||S||2HS(K).

3.2 Wigner’s and Clebsch-Gordan coefficients

In this section we review briefly some background facts and notation about Wigner’s
3j and Clebsch-Gordan coefficients; see [41] and [27] for a much more detailed discus-
sion, in particular concerning the relationships with the quantum theory of angular
momentum and group representation properties of SO(3).

We start recalling the following analytic expression for the Wigner’s 3j coefficients
(valid for m1 +m2 +m3 = 0, see [41], eq. (8.2.1.5))

(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)
:= (−1)ℓ1+m1

√
2ℓ3 + 1

[
(ℓ1 + ℓ2 − ℓ3)!(ℓ1 − ℓ2 + ℓ3)!(ℓ1 − ℓ2 + ℓ3)!

(ℓ1 + ℓ2 + ℓ3 + 1)!

]1/2

×
[

(ℓ3 +m3)!(ℓ3 −m3)!

(ℓ1 +m1)!(ℓ1 −m1)!(ℓ2 +m2)!(ℓ2 −m2)!

]1/2

×
∑

z

(−1)z(ℓ2 + ℓ3 +m1 − z)!(ℓ1 −m1 + z)!

z!(ℓ2 + ℓ3 − ℓ1 − z)!(ℓ3 +m3 − z)!(ℓ1 − ℓ2 −m3 + z)!
,
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where the summation runs over all z′s such that the factorials are non-negative.
This expression becomes simpler when m1 = m2 = m3 = 0, where we have

(
ℓ1 ℓ2 ℓ3
0 0 0

)
=





0,

for ℓ1 + ℓ2 + ℓ3 odd

(−1)
ℓ1+ℓ2−ℓ3

2 [(ℓ1+ℓ2+ℓ3)/2]!
[(ℓ1+ℓ2−ℓ3)/2]![(ℓ1−ℓ2+ℓ3)/2]![(−ℓ1+ℓ2+ℓ3)/2]!

{ (ℓ1+ℓ2−ℓ3)!(ℓ1−ℓ2+ℓ3)!(−ℓ1+ℓ2+ℓ3)!
(ℓ1+ℓ2+ℓ3+1)!

}1/2
,

for ℓ1 + ℓ2 + ℓ3 even.

(3.2)

On the other hand the so-called Clebsch-Gordan coefficients, denoted by {Cℓ3,m3

ℓ1,m1;ℓ2,m2
},

are defined by the identities (see [41], Chapter 8)

(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)
= (−1)ℓ3+m3

1√
2ℓ3 + 1

Cℓ3,m3

ℓ1,−m1;ℓ2,−m2
(3.3)

Cℓ3,m3

ℓ1,m1;ℓ2,m2
= (−1)ℓ1−ℓ2+m3

√
2ℓ3 + 1

(
ℓ1 ℓ2 ℓ3
m1 m2 −m3

)
. (3.4)

The following orthonormality properties hold and are exploited in this paper:

∑

m1m2

Cℓ3,m3

ℓ1,m1;ℓ2,m2
C

ℓ′3,m
′
3

ℓ1,m1;ℓ2,m2
= δ

ℓ′3
ℓ3
δm

′
3

m3
, (3.5)

∑

ℓm

Cℓm
ℓ1,m1;ℓ2,m2

Cℓ,m
ℓ1,m′

1;ℓ2,m
′
2
= δm

′
1

m1
δm

′
2

m2
. (3.6)

Note that the Clebsch-Gordan coefficients vanish unless the so-called triangular
conditions

|ℓ1 − ℓ2| ≤ ℓ3 ≤ ℓ1 + ℓ2, and the equation m1 +m2 = m3

are satisfied (see [41], Chapter 8). For some special values of the arguments, namely
if ℓ3 = 0 or ℓ2 = 0, one has more explicit forms of these coefficients:

C0,0
ℓ1,m1;ℓ2,m2

= (−1)ℓ1−m1
δℓ2ℓ1δ

−m2
m1√

2ℓ1 + 1
. (3.7)

From Remark 8.9 in [27] we also have the inequality

{CL,0
ℓ,0;ℓ,0}2 ≤

1

(2L+ 1)
. (3.8)
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Now we recall the general formula ([41], eqs. 5.6.2.12-13, or [27] eqs 3.64 and 6.46)
for the evaluation of multiple integrals of spherical harmonics, the so-called Gaunt
integrals, given by

∫

S2

Yℓ1m1(x).....Yℓnmn
(x) dx

=

√
4π

2ℓn + 1

∑

L1...Ln−3

∑

M1...Mn−3

[
CL1,M1

ℓ1,m1;ℓ2,m2
CL2,M2

L1,M1;ℓ3,m3
...Cℓn,−mn

Ln−3,Mn−3;ℓn−1,mn−1

×
√∏n−1

i=1 (2ℓi + 1)

(4π)n−1
{CL1,0

ℓ1,0;ℓ2,0
CL2,0

L1,0;ℓ3,0
...Cℓn,0

Ln−3,0;ℓn−1,0
}


 .

The most important case dealt with in this paper is given by

∫

S2

Yℓm1(x)Yℓm2(x)Yℓm3(x)Yℓm4(x) dx

=
(2ℓ+ 1)√

4π

∑

L

(−1)L−M{CL,0
ℓ,0;ℓ,0}2

CL,M
ℓ,m1;ℓ,m2

CL,−M
ℓ,m3;ℓ,m4

2L+ 1
.

Similarly, as shown in [31, Eq. (30)], the following identity hold

∫ 1

0

Pl(t)
4 dt =

1

2ℓ+ 1

2ℓ∑

L=0

{CL,0
l,0;l,0C

L,0
L,0;l,0}2

=

2l∑

L=0

(2L+ 1)

(
l l L
0 0 0

)4

compare [41, Eq. (8.9.4.20)].
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