We investigate the asymptotic behavior of the nodal lines for random spherical harmonics restricted to shrinking domains, in the 2-dimensional case: for example, the length of the zero set Zℓ,rℓ:= ZBrℓ (Tℓ) = len({x ∈ S2 ∩ Brℓ: Tℓ(x) = 0}), where Brℓ is the spherical cap of radius rℓ. We show that the variance of the nodal length is logarithmic in the high energy limit; moreover, it is asymptotically fully equivalent, in the L2-sense, to the "local sample trispectrum", namely, the integral on the ball of the fourth-order Hermite polynomial. This result extends and generalizes some recent findings for the full spherical case. As a consequence a Central Limit Theorem is established.

Nodal lengths in shrinking domains for random eigenfunctions on S2

Todino, AP
2020-01-01

Abstract

We investigate the asymptotic behavior of the nodal lines for random spherical harmonics restricted to shrinking domains, in the 2-dimensional case: for example, the length of the zero set Zℓ,rℓ:= ZBrℓ (Tℓ) = len({x ∈ S2 ∩ Brℓ: Tℓ(x) = 0}), where Brℓ is the spherical cap of radius rℓ. We show that the variance of the nodal length is logarithmic in the high energy limit; moreover, it is asymptotically fully equivalent, in the L2-sense, to the "local sample trispectrum", namely, the integral on the ball of the fourth-order Hermite polynomial. This result extends and generalizes some recent findings for the full spherical case. As a consequence a Central Limit Theorem is established.
File in questo prodotto:
File Dimensione Formato  
BEJ1216.pdf

file disponibile solo agli amministratori

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 286.09 kB
Formato Adobe PDF
286.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
bernoulli.pdf

file ad accesso aperto

Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 374.18 kB
Formato Adobe PDF
374.18 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/165047
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 13
social impact