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Abstract

We investigate the asymptotic behavior of the nodal lines for random spherical
harmonics restricted to shrinking domains, in the 2-dimensional case: e.g., the length
of the zero set Zℓ,rℓ := ZBr

ℓ (Tℓ) = len({x ∈ S2 ∩ Brℓ : Tℓ(x) = 0}), where Brℓ

is the spherical cap of radius rℓ. We show that the variance of the nodal length is
logarithmic in the high energy limit; moreover, it is asymptotically fully equivalent,
in the L2-sense, to the “local sample trispectrum”, namely, the integral on the ball of
the fourth-order Hermite polynomial. This result extends and generalizes some recent
findings for the full spherical case. As a consequence a Central Limit Theorem is
established.

• Keywords and Phrases: Random Eigenfunctions, Limit Theorem, Sample Trispec-
trum, Berry’s Cancellation.

• AMS Classification: 35P20, 60F05, 58J50, 60G60.

1 Introduction and Background

Let us consider the spherical Laplacian ∆S2 , defined as usual by

∆S2 =
1

sin θ

∂

∂θ

{

sin θ
∂

∂θ

}

+
1

sin2 θ

∂

∂2ϕ

and {Tℓ(x), x ∈ S2}, satisfying ∆S2Tℓ(x)+ℓ(ℓ+1)Tℓ(x) = 0, the centred isotropic Gaussian
random spherical harmonics with covariance function given by

E[Tℓ(x)Tℓ(y)] = Pℓ(cos d(x, y)),

being Pℓ the Legendre polynomial and d(x, y) the spherical geodesic distance between x
and y, d(x, y) = arccos(〈x, y〉). As usual, the nodal set of Tℓ is given by T−1

ℓ (0) = {x ∈
S2 : Tℓ(x) = 0} and we denote its volume by

Z(Tℓ) = len({x ∈ S2 : Tℓ(x) = 0}); (1.1)

1

http://arxiv.org/abs/1807.11787v2


the analysis of these domains has been considered by many authors, see e.g. [13], [34], [35],
[14], [8], [9]. As a consequence of the general Yau’s conjecture ([34], [35]) for eigenfunctions
on compact manifolds (proved in [14] for real analytic metrics and by [17], [16] and [18]
for the smooth case) we know that, in the high energy limit, the length of the nodal set is
bounded by

c1
√

ℓ(ℓ+ 1) ≤ len(T−1
ℓ (0)) ≤ c2

√

ℓ(ℓ+ 1),

where c1, c2 > 0. In the case of Gaussian random eigenfunctions, some sharper probabilis-
tic bounds can be given. The asymptotic behavior of the expected value was given in [4];
for any dimension m,m ≥ 2, they obtained

E[Z(Tℓ)
m] = cm

√

ℓ(ℓ+m− 1),

where cm =
2πm/2√
mΓ(m2 )

(see also [22] and [33]). As far as the variance is concerned, [22]

gave an upper bound which was later improved in [33] and [32], where it was computed
to be

Var(Z(Tℓ)) =
1

32
log ℓ+O(1) (1.2)

as ℓ → ∞. As a consequence, the variance of the nodal length Z(Tℓ) has smaller order
O(log ℓ), in the high energy limit, with respect to the variance of boundary length at
thresholds different from zero, which has been shown to be O(ℓ) (see for instance [27]).
This phenomenon is known as “Berry’s cancellation” ([5]); it is known to occur on the
torus ([15]) and on other geometric functionals of random eigenfunctions, see e.g., [11],
[12], [10]. More precisely, as far as the torus is concerned, [29] and [15] studied the
volume of the nodal line (denoted with Lℓ) of random eigenfunctions (“arithmetic random
waves”) T 2 = R2/Z2. The expected length was evaluated with the Kac-Rice formula in
[29] (Proposition 4.1),

E[Lℓ] =
1

2
√
2

√
4π2ℓ,

and the asymptotic behavior of the variance was established in [15]; it holds that

Var(Lℓ) = cℓ ·
4π2ℓ

N 2
ℓ

(

1 +O

(
1

N 1/2
ℓ

))

,

where Nℓ is the number of lattice points lying on the radius-
√
ℓ circle ([15]) and cℓ is the

leading coefficient, depending on the distribution of the lattice points on the circle. Hence,
as mentioned before, the “Berry’s cancellation” phenomenon ([5]) takes place also for the
toral nodal length. The distribution of Lℓ was investigated in [19], where the authors
established a nonCentral Limit Theorem. See also [28] for nodal intersections, [9] for the
number of nodal domains. Berry’s random planar wave model was also considered (see
[24]), both in the real and complex case.

A general interpretation of these results can be given quickly as follows (see [19], [20],
[26] for more discussions and details). The nodal length Lℓ of random eigenfunctions can
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be expanded, in the L2−sense, in terms of its q-th order chaotic components, to obtain
the orthogonal expansion:

Lℓ − E[Lℓ] =
∞∑

q=1

Proj[Lℓ|Cq],

P roj[Lℓ|Cq] denoting the projection on the q−component (see the supplement article
[31], Section A.1). It can be shown that, in the case of functionals evaluated on the full
sphere or torus, the projection on the first component vanishes identically; in the nodal
case, Proj[Lℓ|C2] vanishes as well, and the whole series is dominated simply by the term
Proj[Lℓ|C4], e.g., the so-called fourth-order chaos, which has indeed logarithmic variance.
More explicitly, the variance of this single term is asymptotically equivalent to the variance
of the full series, and its asymptotic distribution (Gaussian in the spherical case, nonGaus-
sian for the torus, see [29]) gives also the limiting behavior of the nodal fluctuations. It
should also be noted that, in the case of the sphere, Proj[Lℓ|C4] takes a very simple form,
because it is proportional to the so-called sample trispectrum of Tℓ,

∫

S2 H4(Tℓ(x)) dx (be-
ing Hj the j−th Hermite polynomial): this is to some extent unexpected, because the
fourth-order chaotic term should in general be given by a complicated linear combination
of polynomials involving also the gradient of the eigenfunctions (see the supplement ar-
ticle [31], Section A.1.1), as it happens for arithmetic random waves on the torus, see [19]).

A natural question at this stage is to investigate what happens on subdomains of the
sphere or other manifolds (see for example [3] for arithmetic random waves). The nodal
volume inside a “nice” domain F ⊂ S2 of the sphere, is defined as

ZF (Tℓ) := len({Tℓ = 0} ∩ F ). (1.3)

In [32], to address this issue the so-called linear statistics of the nodal set are introduced;
more precisely, let ϕ : S2 → R be a smooth function, and define the random variable
Zϕ(Tℓ) as

Zϕ(Tℓ) :=

∫

T−1

ℓ (0)
ϕ(x) d lenT−1

ℓ (0)(x). (1.4)

Apparently this definition is well-posed only for continuous test function ϕ ∈ C(S2); nev-
ertheless, it was shown in [32] that bounded variation functions BV (S2) can be considered:
indeed, it is possible to prove that, for ϕ ∈ BV (S2) ∩ L∞(S2) a not identically vanishing
function, as ℓ→ ∞, the variance satisfies

Var(Zϕ(Tℓ)) =
||ϕ||2L2(S2)

128π
· log ℓ+Oϕ(1). (1.5)

These results allow to cover indicator functions, indeed (1.3) is equal to (1.4) for ϕ(x) =
1F (x), e.g. Zϕ(Tℓ) = len({x ∈ S2 ∩ F : Tℓ(x) = 0}).

As a consequence of (1.5), for F ⊂ S2 a submanifold of the sphere with C2 boundary,
and |F | denotes its area, it was proved in [32] that, as ℓ → ∞, the variance of (1.3) is
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given by:

Var(ZF (Tℓ)) =
|F |
128π

· log ℓ+OF (1),

e.g., logarithmic behavior occurs also in subdomains.
As far as the torus is concerned, the nodal length of arithmetic random waves restricted

to shrinking balls (denoted with Lℓ,rℓ, where rℓ is the radius of the ball) was investigated
in [3] under the condition rℓ > ℓ−1/2. The mean was easily obtained by means of Kac-Rice
formula ([1], [2])

E[Lℓ,rℓ ] =
1

2
√
2
(πr2ℓ ) ·

√
4π2ℓ,

whereas the variance was shown to be proportional to the variance of the toral nodal
length, e.g.,

Var(Lℓ,rℓ) = cℓ · (πr2ℓ )2 ·
4π2ℓ

N 2
ℓ

(

1 +O

(
1

N 1/2
ℓ

))

.

More surprisingly, it was shown that asymptotically the local and global nodal lengths
are fully correlated. This result entails also that, up to a scaling factor, the same limiting
nonGaussian distribution holds in both cases.

2 Main Results

In this paper, we investigate the behavior of the nodal length for random spherical har-
monics evaluated in a shrinking ball on the sphere. Without loss of generality, we consider
spherical caps centered in the North Pole N . We prove that the nodal length is still
dominated by a single term, corresponding to the fourth chaotic projection; moreover,
this term can be written as a local form of the sample trispectrum, and its asymptotic
variance is logarithmic (e.g., O(r2ℓ log(rℓℓ))). Contrary to the case of the torus, however,
full correlation does not hold between nodal and global statistics. “Berry’s cancellation”
phenomenon takes place in this framework as well, and indeed the first and second order
chaotic components are still of lower order with respect to the leading term, although not
identically equal to zero as in the full spherical case.

Here and in the rest of the paper we will always denote with Brℓ ⊂ S2 a shrinking
spherical cap of radius rℓ, with rℓ → 0, as ℓ→ ∞, centered in N such that

rℓℓ→ ∞ (2.1)

as ℓ → ∞ (meaning that the support is not shrinking too rapidly). Indeed, the average
length on the disc of radius rℓ is r2ℓ ℓ < rℓℓ; hence, if condition (2.1) is not satisfied, we
cannot expect any asymptotic result to observe. We denote the nodal length in these
domains by

Zℓ,rℓ := ZBrℓ (Tℓ) = len({x ∈ S2 ∩Brℓ : Tℓ(x) = 0}). (2.2)
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From the Kac-Rice formula ([1], [2]), it is easy to see that

E[Zℓ,rℓ ] =
√

ℓ(ℓ+ 1)

2

|Brℓ |
2

.

Note that, since the area of a spherical cap Brℓ of radius rℓ is given by |Brℓ | = 2π(1−cos rℓ),
we have that

E[Zℓ,rℓ ] =
√

ℓ(ℓ+ 1)

2
π(1− cos rℓ).

Now let ϕℓ : S
2 → R, ∀ℓ, be the indicator function ϕℓ(x) = 1Brℓ

(x); our first non-trivial
result concerns the asymptotic variance is the following.

Theorem 2.1. Let Zℓ,rℓ be the nodal length defined in (2.2), then its variance, as ℓ→ ∞,
is given by

Var(Zℓ,rℓ) =
1

256
· r2ℓ log(rℓℓ) +O(r2ℓ ). (2.3)

The next result is the following Central Limit Theorem.

Theorem 2.2. Let Zℓ,rℓ defined in (2.2), then, as ℓ→ ∞, we have that

Zℓ,rℓ − E[Zℓ,rℓ ]
√

Var(Zℓ,rℓ)
→d Z,

where →d denote the convergence in distribution and Z ∼ N (0, 1).

Theorem 2.2 follows by exploiting Theorem 5.2.6 in [23] to the fourth chaotic compo-
nent, after lengthy computations of the fourth cumulant (which is, for Y a centred random
variable, cum4(Y ) = EY 4 − 3(EY 2)2) of this chaotic projection.

2.1 Comparison with the 2-dimensional Torus

Although the differences and the similarities of the results obtained for the torus and for
the sphere have already been discussed, we make them clearer in this subsection.

• In contrast to the torus, where a full correlation between the nodal length in shrinking
domains and the one in the total manifold has been proved (see [3]), in the sphere
the following proposition holds.

Proposition 2.3. Let Zℓ,rℓ be defined in (2.2) and Z(Tℓ) in (1.1), the correlation
between Zℓ,rℓ and Z(Tℓ), as ℓ→ ∞, is given by

Corr(Zℓ,rℓ ;Z(Tℓ)) = O

(

rℓ

√

log ℓ

log rℓℓ

)

= o(1).
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Proposition 2.3 entails on the contrary that the correlation between the “local” and
“global” nodal length is zero, in the high frequency limit. The discrepancy between
these two results can be heuristically explained as follows: in the case of the torus,
local integrals for products of four eigenfunctions have the same form, whatever
the centre of the disc on which they are computed (see [3]). This is not the case
when integral of the products of four spherical harmonics is computed on a disc; this
integral has different values depending on the centre of the disc and because of this
full correlation cannot be expected.

• In the case of the torus, the full correlation result allows to establish immediately
the (nonCentral) Limit Theorem for the nodal length in the shrinking set; indeed,
the “local” limiting distribution is the same as the “global” one, up to a different
scaling constant. On the contrary, to establish a (Central) Limit Theorem for the
spherical cap, a different proof is required; indeed we need to apply Theorem 5.2.6
in [23] and hence to compute the fourth cumulant of the leading chaos projection of
the nodal length. In passing we stress that the limiting in distribution is Gaussian
in the present framework, while it is a linear combinations of Chi-square random
variables in the torus.

• In both the manifolds and their subregions, the fourth chaotic component is the
leading term of the chaos expansion of the nodal length and the “Berry’s cancella-
tion” phenomenon occurs. However, only in the sphere and in its subdomains, the
dominant component is asymptotic to the sample trispectrum, e.g. it has a much
simpler form as the integral of the fourth Hermite polynomial, computed only on
the eigenfunctions themselves.

2.2 Plan of the paper

In Section 3 we explain the basic ideas for proving the main results of the paper; while the
main tools to succeed in our computations are introduced in Section 4, where an auxiliary
function and its properties and the construction of a smooth approximation of the indicator
function are discussed. Chapter 5 is splitted in two subsections; 5.1 contains the proof
of the asymptotic behavior of the variance and 5.2 proves the Central Limit Theorem.
In Section 6 the correlation between “local” and “global” nodal length is computed and
finally Section 7 collects some technical tools exploited in the computations.

2.3 Some conventions

Given a set F ⊂ S2, we denote its area by |F | and for a smooth curve C ⊂ S2, len(C) its
length. We will use A≪ B and A = O(B) in the same way. Oϕ means that the constants
involved depend on the function ϕ and they stay bounded when ϕ stays bounded.
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3 On the proof of the main results

In this section we give the guideline of the proof of the main results. In the full sphere, it
is possible to write the second moment as

E[(Z(Tℓ))
2] =

∫

S2×S2

K̃ℓ(x, y) dxdy (3.1)

(see [6] Theorem 2.2, [7] Theorem 4.3, [33] Proposition 3.3), where K̃ℓ(x, y) = K̃ℓ(d(x, y))
is the two-point correlation function (see Section 7), and the symmetry of the domain
implies that, changing coordinates, (3.1) yields

E[(Z(Tℓ))
2] = 8π2

∫ π

0
K̃ℓ(ρ) sin ρ dρ

which allows to handle the computations and to establish the asymptotic behavior of the
variance. Focussing instead on a subdomain, the lack of this symmetry prevents this
change of coordinates. However, using (1.4) and the same argument as in [32] (Proof of
Theorem 1.4), it can be shown that for any function ϕ : S2 → R in C1(S2), we have that

E[(Zϕ(Tℓ))
2] =

∫

S2×S2

ϕ(x)ϕ(y)K̃ℓ(x, y) dxdy.

Now, introducing an auxiliary function Wϕ : [0, π] → R (see also [32]), defined as

Wϕ(ρ) :=
1

8π2

∫

d(x,y)=ρ
ϕ(x)ϕ(y) dx dy x, y ∈ S2, (3.2)

and employing Fubini, we get that

E[(Zϕ(Tℓ))
2] = 8π2

∫ π

0
K̃ℓ(ρ)W

ϕ(ρ) dρ

with K̃ℓ(ρ) = K̃ℓ(x, y), x, y ∈ S2 being any pair of points with d(x, y) = ρ. The crucial
observation is that the case of a spherical cap can be cast in this framework, simply taking
ϕ = 1Brℓ

, which is a function in BV (S2) ∩ L∞(S2), ∀ℓ.
More precisely, the key role in the proof of Theorem 2.1 will be played by a sequence of
auxiliary functions, Wϕℓ : [0, 2rℓ] → R, defined as

Wϕℓ(ρ) :=
1

8π2

∫

d(x,y)=ρ
ϕℓ(x)ϕℓ(y) dx dy x, y ∈ S2; (3.3)

and using a density argument and approximating 1Brℓ
with C1 functions ϕiℓ, the second

moment could be written as

E[(Zϕi
ℓ(Tℓ))

2] = 8π2
∫ 2rℓ

0
K̃ℓ(ρ)W

ϕi
ℓ(ρ) dρ.
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Note that (3.3) is not zero if and only if the variables x, y are inside the spherical cap Brℓ ,
hence the maximum distance allowed between two points to make (3.3) different from zero
is ρ = 2rℓ. For ϕℓ = 1Brℓ

and for x, y ∈ Brℓ, (3.3) can be written also as

Wϕℓ(ρ) =
1

8π2

∫

Brℓ

len{y ∈ Brℓ : d(x, y) = ρ} dx.

Then, if we fix x “far” from the boundary, the integrand will be given by len{y ∈ Brℓ :
d(x, y) = ρ} = 2π sin ρ; note that, however, Wϕℓ depends on the position of x. Moreover,
for decreasing sequence rℓ a tangent plane approximation can be shown to hold, whence,
we can also define the function W̃ϕ̃ℓ

: [0, 2rℓ] → R as

W̃ϕ̃ℓ
(ρ) :=

1

8π2

∫

d(x,y)=ρ
ϕ̃ℓ(x)ϕ̃ℓ(y)dxdy x, y ∈ R2, (3.4)

where ϕ̃ℓ is given by the composition ϕℓ ◦ exp and exp is the exponential map. Note that
W̃ϕ̃ℓ

is nonzero if x, y ∈ B̃rℓ, which is the disc contained in R2 of radius rℓ and centered in
the origin of the axes. In order to scale the support of ϕ̃ℓ from B̃rℓ in B̃1, we define also

W̃1

(

ρ
1

rℓ

)

:=
1

8π2

∫

d(x,y)= ρ
rℓ

ϕ̃ℓ(rℓx)ϕ̃ℓ(rℓy) dx dy x, y ∈ R2. (3.5)

Denoting Wrℓ(ρ) := W
1Brℓ (ρ) (e.g. ϕℓ = 1Brℓ

), it is easy to check the validity of the
asymptotic relation below:

Wrℓ(ρ) = r3ℓ W̃1

(

ρ
1

rℓ

)

(1 +O(ρ2)), (3.6)

as rℓ → 0 uniformly in ρ (see Lemma B.3 in the supplement article [31]).

Hence, as we said before, in order to prove Theorem 2.1 we want to apply a standard
approximation argument; approximating the characteristic function 1Brℓ

with a sequence

of C1 function for which we can apply the following Proposition 3.1.

Proposition 3.1. Let ϕiℓ be a sequence of C1 functions satisfying (4.1) and let define

ϕ̃iℓ(x) := ϕ̃iℓ(rℓx) = ϕiℓ ◦ exp(rℓx). Then, as ℓ→ ∞, the variance Var(Zϕi
ℓ(Tℓ)) is given by

Var(Zϕi
ℓ(Tℓ)) =

||ϕ̃iℓ||2L2(B̃1)

256π
· r2ℓ log(rℓℓ) +O||ϕ̃i

ℓ||∞,V (ϕ̃i
ℓ)
(r2ℓ ), (3.7)

denoting V (ϕ) the total variation of a test function ϕ.

The computations of the variance in Proposition 3.1 will follow from the analysis of
the integral of the two-point correlation function and W ϕ̃i

ℓ ; the main contribution will
actually be given from points far from the diagonal x = y.
To take the limit in (3.7) and obtain the result in Theorem 2.1, we need to check that if ϕiℓ

8



approximates 1Brℓ
, as i→ ∞, the corresponding statement holds for the random variables

Zϕi
ℓ ,Zℓ,rℓ and their variance. It is easy to see that, if ϕi → ϕ in L1(S2), then for every

fixed ℓ, we also have
E[Zϕi

(Tℓ)] → E[Zϕ(Tℓ)]; (3.8)

indeed, it follows from the expected value of a linear statistic,

E[Zϕ(Tℓ)] =

∫

S2 ϕ(x) dx

23/2

√

ℓ(ℓ+ 1) (3.9)

([32] Proposition 1.4, starting from (121)). We will see that the analogous result holds for
the variance in view of Proposition 3.2.

Proposition 3.2. We have that, as ℓ→ ∞,

E[Zϕi
ℓ(Tℓ)

2] = O(ℓr4ℓ ||ϕ̃iℓ||L1(B̃1)
||ϕ̃iℓ||∞).

Another question is that, when applying Proposition 3.1 for ϕiℓ, one needs to control
the error term in (3.7) (which may a priori depend on ϕiℓ). Since we manage to control
it in terms of its L∞ norm and total variation, we can solve this issue requiring ϕiℓ to be
essentially uniformly bounded and having uniformly bounded total variation.

The next step will be the derivation of the Central Limit Theorem, stated in Theorem 2.2.
To this aim, we will start following a similar argument as in [20]; more precisely we define
first the sequence of centered random variables (“local sample trispectrum”)

Mℓ,rℓ := −1

4

√

ℓ(ℓ+ 1)

2

1

4!

∫

Brℓ

H4(Tℓ(x)) dx = −1

4

√

ℓ(ℓ+ 1)

2

1

4!
hℓ,rℓ;4 (3.10)

where for ℓ = 1, 2, . . . ,

hℓ,rℓ;4 :=

∫

Brℓ

H4(Tℓ(x)) dx. (3.11)

The key idea is to prove the asymptotic full correlation between the “local” nodal length
and the “local sample trispectrum”:

Proposition 3.3. The correlation between Zℓ,rℓ and Mℓ,rℓ, in the high energy limit ℓ →
∞, is given by

Corr(Zℓ,rℓ ;Mℓ,rℓ) = 1 +O

(
1

log rℓℓ

)

= 1 + o(1). (3.12)

This result requires the evaluation of the variance of Mℓ,rℓ .

Proposition 3.4. The variance of Mℓ,rℓ is, as ℓ→ ∞, given by

Var[Mℓ,rℓ ] =
1

256
r2ℓ log rℓℓ+O(r2ℓ ).
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The strategy of the proof is the same as for the variance of Zℓ,rℓ; hence, for ϕiℓ a sequence
of C1 functions satisfying (4.1), we define the sequence of centered random variables

Mϕi
ℓ := −1

4

√

ℓ(ℓ+ 1)

2

1

4!

∫

S2

ϕiℓ(y)H4(Tℓ(y)) dy (3.13)

and we prove the following propositions.

Proposition 3.5. The variance of Mϕi
ℓ , as ℓ→ ∞, is given by

Var[Mϕi
ℓ ] =

||ϕ̃iℓ||2L2(B̃1)

256π
r2ℓ log rℓℓ+O||ϕ̃i

ℓ||∞,V (ϕ̃i
ℓ)
(r2ℓ ). (3.14)

Proposition 3.6. We have that, as ℓ→ ∞,

E[Mϕi
ℓ(Tℓ)

2] = O

(

r2ℓ log(rℓℓ)||ϕ̃iℓ||∞||ϕ̃iℓ||L1(B̃1)

)

.

In view of the orthogonality of the projections, the result in (3.12) implies that the
fourth chaotic component is the leading term of the chaos expansion of Zℓ,rℓ and hence it
is sufficient to study its asymptotic behavior. In particular, exploiting the Stein-Malliavin
approach (see [23]), it is enough to focus on the behavior of their fourth order cumulant
([23], Theorem 5.2.7). Here, it is important to note that our argument is quite differ-
ent from the proof given by [20]; in particular, in the full sphere the behavior of the
fourth-order cumulant was already established by means of Clebsch-Gordan coefficients:
the latter cannot be used here due to the lack of analogous explicit results on subdomains.
Hence, we derive efficient bounds by a careful exploitation of Hilb’s asymptotics for powers
of Legendre polynomials.

From now on we will denote with Br ⊂ S2 the ball of radius r, 0 < r < π centered
in N and with B̃r the disc of radius r in R2.

4 Auxiliary functions

In this section we introduce the auxiliary functions, announced in Section 3, involved into
the proofs of our main results.
The indicator function 1Brℓ

belongs to the space BV (S2)∩L∞(S2); to make some compu-
tations easier, it is more convenient to deal with continuously differentiable functions. In
order to control the error term of the variance for the approximating functions (and thus
pass to the limit), it is sufficient that ϕiℓ is uniformly bounded and with uniformly bounded
variation (see [32]) and to prove that the same conditions still hold for ϕ̃iℓ, obtained through
the exponential map. In [32] the existence of such a sequence was established. Denoting
with V (ϕ) the total variation of a test function ϕ, let consider {ϕiℓ}i a sequence of C∞

functions such that, as ℓ → +∞,

ϕiℓ → 1Brℓ
in L1(S2),

V (ϕiℓ) → V (1Brℓ
) and

||ϕiℓ||∞ ≤ ||1Brℓ
||∞.

(4.1)
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Our goal is to check whether analogous conditions still hold for ϕ̃iℓ = ϕiℓ ◦ exp, defined on
R2. To simplify the notation we set ϕ̃iℓ(x) := ϕ̃iℓ(rℓx), x ∈ R2. Note that, since ϕiℓ has
support on S2, which is compact, it follows that ϕ̃iℓ has compact support in B̃1. Hence, it
is easy to prove the validity of the lemma below.

Lemma 4.1. Let ϕ̃iℓ(x) := ϕ̃ℓ(rℓx), x ∈ R2, where ϕ̃iℓ = ϕiℓ ◦ exp and {ϕiℓ}i a sequence
which satisfies (4.1). Then, ϕ̃iℓ : R2 → R are continuously differentiable functions such
that, as i→ ∞,

ϕ̃iℓ → 1B̃1
in L1(R2)

V (ϕ̃iℓ) → V (1B̃1
)

||ϕ̃iℓ||∞ ≤ ||1B̃1
||∞.

(4.2)

Now, let ϕℓ : S
2 → R be the indicator function 1Brℓ

, ∀ℓ. We denoteWrℓ(·) the function
defined in (3.3) with this choice of ϕℓ and W̃1(·) the one in (3.5).

Lemma 4.2. Let us consider the sequence ϕiℓ satisfying (4.1), Wϕi
ℓ(·) and W̃ ϕ̃i

ℓ(·) defined
as (3.3) and (3.5), respectively; then

Wϕi
ℓ(ρ) =

ρ

4π
r2ℓ ||ϕ̃iℓ||2L2(B̃1)

+O||ϕ̃i
ℓ||∞,V (ϕ̃i

ℓ)
(ρ2rℓ) +O(ρ3r2ℓ ||ϕ̃iℓ||2L2(B̃1)

) (4.3)

and
Wϕi

ℓ(ρ) = O(ρr2ℓ ||ϕ̃iℓ||2∞). (4.4)

Proof. As already stated in Section 3, it is quite simple, and it can be found in the sup-
plemental article [31], Lemma B.3, to establish the asymptotic geometric relation between
Wrℓ and W̃1, given in (3.6). If we consider the sequence ϕiℓ satisfying (4.1), Wϕi

ℓ(·) and

W̃ ϕ̃i
ℓ(·) defined as (3.3) and (3.5), respectively, it is easy to see that (3.6) holds for Wϕi

ℓ

and W̃ ϕ̃i
ℓ ; namely, as ℓ→ ∞,

Wϕi
ℓ(ρ) = r3ℓ W̃

ϕ̃i
ℓ(ρ

1

rℓ
)(1 +O(ρ2)), (4.5)

uniformly for ρ ∈ [0, 2rℓ] (for the proof see the supplement article [31], Section B.3, Corol-
lary B.4).
We can also get further informations on W̃ ϕ̃i

ℓ , e.g., using polar coordinates with centre x,
for each x ∈ R2, (e.g. y = (y1, y2) → (ζ, φ) with ζ = ρ and φ = arctan y2−x2

y1−x1 ) we write

W̃ ϕ̃i
ℓ(ρ) =

1

8π2

∫

d(x,y)=ρ
ϕ̃iℓ(x)ϕ̃

i
ℓ(y) dxdy =

ρ

8π2

∫

R2

ϕ̃iℓ(x)

∫ 2π

0
ϕ̃iℓ,x(ρ cosφ, ρ sin φ) dφ dx

for a suitable defined function ϕ̃iℓ,x : R2 → {0, 1}. Defining

W̃
ϕ̃i
ℓ

0 (ρ) :=

∫

R2

ϕ̃iℓ(x)

∫ 2π

0
ϕ̃iℓ,x(ρ cosφ, ρ sin φ) dφ dx, (4.6)

11



we have that

W̃ ϕ̃i
ℓ(ρ) =

ρ

8π2
W̃0

ϕ̃i
ℓ(ρ). (4.7)

Note that W̃
ϕ̃i
ℓ

0 (ρ) is bounded by

|W̃ ϕ̃i
ℓ

0 (ρ)| ≤ 2π||ϕ̃iℓ||∞||ϕ̃iℓ||L1(B̃1)
≤ 2π2||ϕ̃iℓ||2∞, (4.8)

and in zero, it is equal to

W̃0
ϕ̃i
ℓ(0) = 2π||ϕ̃iℓ||2L2(B̃1)

. (4.9)

Moreover, it can be seen that the derivative of W̃
ϕ̃i
ℓ

0 (ρ) is uniformly bounded by

|W̃ ϕ̃i
ℓ

0 (ρ)′| ≤ 2π||ϕ̃iℓ||∞V (ϕ̃iℓ); (4.10)

indeed, exchanging the order of the derivative and the integral, we obtain

∣
∣
∣
∣

∂

∂ρ
W̃

ϕ̃i
ℓ

0 (ρ)

∣
∣
∣
∣
≤

∫

R2

∣
∣
∣
∣
ϕ̃iℓ(x)

∫ 2π

0

∂

∂ρ
ϕ̃iℓ(ρ cosφ, ρ sin φ) dφ

∣
∣
∣
∣
dx

≤ 2π

∫

B̃1

|ϕ̃iℓ(x)|||∇ϕ̃iℓ(x)|| dx = 2π||ϕ̃iℓ||∞V (ϕ̃iℓ).

Then, in view of (4.9) and the continuous differentiability of W̃
ϕ̃i
ℓ

0 (ρ), the Mean Value
Theorem implies that, as ρ→ 0,

W̃
ϕ̃i
ℓ

0 (ρ) = 2π||ϕ̃iℓ||2L2(B̃1)
+O||ϕ̃i

ℓ||∞,V (ϕ̃i
ℓ)
(ρ). (4.11)

Now, putting (4.7) in (4.5) we can state that, as ℓ→ ∞,

Wϕi
ℓ(ρ) =

ρ

8π2
r2ℓ W̃

ϕ̃i
ℓ

0

(
ρ

rℓ

)

(1 +O(ρ2)), (4.12)

with ρ ∈ [0, rℓ].
Finally, replacing (4.11) in (4.12), we obtain (4.3) and then thanks also to (4.8), (4.4)
follows.

From now on {ϕiℓ}i will denote a sequence satisfying (4.1) and {ϕ̃iℓ}i the one satisfying
(4.2).

5 Proof of the main results

5.1 Proof of Theorem 2.1 (Asymptotics for the variance)

As we have already mentioned, we apply an approximation argument; hence assuming the
validity of Proposition 3.1 and Proposition 3.2 we prove Theorem 2.1.
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Proof of Theorem 2.1 assuming Proposition 3.1 and Proposition 3.2 . Let ϕiℓ ∈ C∞ be a
sequence of smooth functions satisfying (4.1) and let ϕ̃iℓ defined as in Lemma 4.1 satisfying
(4.2). Proposition 3.1 states that

Var(Zϕi
ℓ(Tℓ)) =

||ϕ̃iℓ||2L2(B̃1)

256π
· r2ℓ log(rℓℓ) +O||ϕ̃i

ℓ||∞,V (ϕ̃i
ℓ)
(r2ℓ ); (5.1)

since ϕ̃iℓ and 1B̃1
are uniformly bounded, L1(R2)-convergence implies L2(R2)-convergence,

||ϕ̃iℓ||L2(R2) → ||1B̃1
||L2(R2) =

√
π and it remains to prove that

Var[Zϕi
ℓ(Tℓ)] → Var[Zℓ,rℓ].

To take the limit we need to show that the distribution of Zϕi
ℓ depends continuously on

ϕiℓ. Indeed, by linearity of Zϕ on ϕ, we have that

E[(Zϕi
ℓ(Tℓ)−Zℓ,rℓ)2] = E[(Zϕi

ℓ−1Brℓ )2]

and applying Proposition 3.2 to the difference ϕiℓ − 1Brℓ
, we get that

E[(Zϕi
ℓ−1Brℓ )2] = O(ℓr4ℓ ||ϕ̃iℓ − 1B̃1

||L1(B̃1)
||ϕ̃iℓ − 1B̃1

||∞) → 0,

as i→ ∞, hence

|Var[Zϕi
ℓ(Tℓ)]−Var[Zℓ,rℓ]| = |E[(Zϕi

ℓ(Tℓ))
2 − (Zℓ,rℓ)2]|+ |(E[Zϕi

ℓ(Tℓ)])
2 − (E[Zℓ,rℓ ])2|.

The second summand goes to zero for (3.9), whereas for the first summand we have that

|E[(Zϕi
ℓ(Tℓ)

2 − (Zℓ,rℓ)2)]| = |E[(Zϕi
ℓ(Tℓ)−Zℓ,rℓ)2]− 2E[Z2

ℓ,rℓ
] + 2E[Zϕi

ℓ(Tℓ)Zℓ,rℓ ]|
≤ |E[(Zϕi

ℓ(Tℓ)−Zℓ,rℓ)2]|+ 2|E[Zϕi
ℓ(Tℓ)Zℓ,rℓ − (Zℓ,rℓ)2]|

≤ |E[(Zϕi
ℓ(Tℓ)−Zℓ,rℓ)2]|+ 2|E[(Zϕi

ℓ(Tℓ)− (Zℓ,rℓ))Zℓ,rℓ ]|
≤ |E[(Zϕi

ℓ(Tℓ)−Zℓ,rℓ)2]|+ 2E[(Zϕi
ℓ(Tℓ)−Zℓ,rℓ)2]1/2E[Z2

ℓ,rℓ
)]1/2

(5.2)

which goes to zero for Proposition 3.2. Hence, taking the limit, as i → ∞, in (5.1) we
obtain the thesis of Theorem 2.1.

Before proving Proposition 3.1 and Proposition 3.2 we introduce the 2-point correlation
function K̃ℓ(x, y) = K̃ℓ(d(x, y)), defined as

K̃ℓ(x, y) =
1

(2π)
√

1− Pℓ(x, y)2
E[||∇Tℓ(x)|| · ||∇Tℓ(y)|||Tℓ(x) = Tℓ(y) = 0]

(see [32]). The following result is proved in [32], Proposition 3.5.
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Proposition 5.1. For any choice of C > 0, as ℓ→ ∞, we have

Kℓ(ψ) =
1

4
+

1

2

sin(2ψ)

πℓ sin(ψ/L)
+

1

256

1

π2ℓ sin(ψ/L)ψ
+

9

32

cos(2ψ)

πℓψ sin(ψ/L)
+

+
27
64 sin(2ψ) − 75

256 cos(4ψ)

π2ℓψ sin(ψ/L)
+O

(
1

ψ3
+

1

ℓψ

)

,

(5.3)

uniformly for C < ψ <
πL

2
, where K̃ℓ(

ψ
L ) =

ℓ(ℓ+1)
2 Kℓ(ψ).

It is also known that, for 0 < ψ < C, we may bound ([32], equation (98))

∣
∣
∣
∣
Kℓ(ψ)

∣
∣
∣
∣
= O

(
1

ψ

)

. (5.4)

Proof of Proposition 3.1. In [32] (Proof of Theorem 1.4), it is shown that for functions in
C1(S2), it is possible to write

E[(Zϕi
ℓ(Tℓ))

2] =

∫

S2×S2

ϕiℓ(x)ϕ
i
ℓ(y)K̃ℓ(x, y) dxdy. (5.5)

Employing Fubini, we get

E[(Zϕi
ℓ(Tℓ))

2] = 8π2
∫ 2rℓ

0
K̃ℓ(ρ)W

ϕi
ℓ(ρ) dρ; (5.6)

with K̃ℓ(ρ) = K̃ℓ(x, y), x, y ∈ S2 being any pair of points with d(x, y) = ρ. Indeed, we
change coordinates in (5.5), centering x and parameterizing y in terms of (l, θ), where
l = d(x, y) ∈ [0, 2rℓ] is the distance between x and y and θ ∈ [0, 2π]. The norm of the
Jacobian of this change of coordintaes is 1, since every transformation in the sphere can
be seen as a rotation; then, applying Fubini and doing the same change of coordinates in
the definition of Wϕi

ℓ (this time l is fixed inside the integral to be ρ) it is seen the validity
of equation (5.6). Now, denoting L = ℓ+ 1

2 , changing the coordinates ρ = ψ
L , and writing

8π2 as 2π|S2|, we have that

E[(Zϕi
ℓ(Tℓ))

2] =
2π|S2|
L

∫ 2rℓL

0
K̃ℓ

(
ψ

L

)

Wϕi
ℓ

(
ψ

L

)

dψ;

setting K̃ℓ(
ψ
L ) :=

ℓ(ℓ+1)
2 Kℓ(ψ), we obtain that

E[(Zϕi
ℓ(Tℓ))

2] =
π|S2|
L

ℓ(ℓ+ 1)

∫ 2rℓL

0
Kℓ(ψ)W

ϕi
ℓ

(
ψ

L

)

dψ.

Moreover, from (3.9) it follows that

(E[Zϕi
ℓ(Tℓ)])

2 =
ℓ(ℓ+ 1)

2 · 4

∫

S2×S2

ϕiℓ(x)ϕ
i
ℓ(y) dxdy
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and applying Fubini and changing cordinates as above we obtain

E[Zϕi
ℓ(Tℓ)]

2 =
ℓ(ℓ+ 1)

8L
2π|S2|

∫ 2rℓL

0
Wϕi

ℓ

(
ψ

L

)

dψ,

from which we conclude that

Var[Zϕi
ℓ(Tℓ)] =

π|S2|ℓ(ℓ+ 1)

L

∫ 2rℓL

0

(

Kℓ(ψ) −
1

4

)

Wϕi
ℓ

(
ψ

L

)

dψ. (5.7)

Splitting the interval of the integral in [0, 1] and [1, 2rℓL], we have that

Var[(Zϕi
ℓ(Tℓ))] =

π|S2|ℓ(ℓ+ 1)

L

∫ 1

0

(

Kℓ(ψ)−
1

4

)

Wϕi
ℓ

(
ψ

L

)

dψ

+
π|S2|ℓ(ℓ+ 1)

L

∫ 2rℓL

1

(

Kℓ(ψ)−
1

4

)

Wϕi
ℓ

(
ψ

L

)

dψ

(5.8)

and in view of (5.4) and (4.4) the first integral in (5.8) is equal to

O||ϕ̃i
ℓ||∞

(
π|S2|ℓ(ℓ+ 1)

L2
r2ℓ

∫ 1

0

∣
∣
∣
∣

1

ψ
− 1

4

∣
∣
∣
∣
ψ dψ

)

= O||ϕ̃i
ℓ||∞(r2ℓ ).

The second integral in the right hand side of (5.8) is, exploiting (4.3), given by

π|S2|||ϕ̃iℓ||2L2(B̃1)
ℓ(ℓ+ 1)

4πL2
r2ℓ

∫ 2rℓL

1

(

Kℓ(ψ)−
1

4

)

ψ dψ

︸ ︷︷ ︸

(a)

+

+O||ϕ̃i
ℓ||∞,V (ϕ̃i

ℓ)

(
ℓ(ℓ+ 1)

L3
rℓ

∫ 2rℓL

1

(

Kℓ(ψ)−
1

4

)

ψ2 dψ

)

︸ ︷︷ ︸

(b)

+

+O||ϕ̃i
ℓ||∞

(
ℓ(ℓ+ 1)

L4
r2ℓ

∫ 2rℓL

1

(

Kℓ(ψ)−
1

4

)

ψ3 dψ

)

︸ ︷︷ ︸

(c)

.

(5.9)

Thanks to Corollary 7.5, equation (7.5), integral (a) is given by

(a) =
||ϕ̃iℓ||2L2(B̃1)

256π
r2ℓ log rℓℓ+O(r2ℓ ).

In view of Lemma 7.1, the error term in (b) is

(b) = O||ϕ̃i
ℓ||∞,V (ϕ̃i

ℓ)

(
rℓ
ℓ
(2rℓℓ− 1)

)

= O||ϕ̃i
ℓ||∞,V (ϕ̃i

ℓ)
(r2ℓ ). (5.10)
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Regarding (c), similar computations lead to (c) = O( rℓ
ℓ2
((2rℓℓ)

2 − 1)) = O||ϕ̃i
ℓ||∞(r4ℓ ) and

then, we can conclude that the variance of Zϕi
ℓ(Tℓ) is

Var[Zϕi
ℓ(Tℓ)] =

||ϕ̃iℓ||2L2(B̃1)

256π
r2ℓ log(rℓℓ) +O||ϕ̃i

ℓ||∞,V (ϕ̃i
ℓ)
(r2ℓ ).

Proof of Proposition 3.2. As we did in the proof of Proposition 3.1 we write

E[(Zϕi
ℓ(Tℓ))

2] =

∫

S2×S2

K̃ℓ(x, y)ϕ
i
ℓ(x)ϕ

i
ℓ(y) dxdy

=
π|S2|ℓ(ℓ+ 1)

L

∫ 2rℓL

0
Kℓ(ψ)W

ϕi
ℓ

(
ψ

L

)

dψ

(5.11)

Splitting the integral, in [1, 2rℓℓ], thanks to Lemma 7.1, Kℓ(ψ) is bounded by a constant
so that |Kℓ(ψ)| = OC(1); whereas in [0, 1], we exploit (5.4). Hence, using (4.3), we get

∣
∣
∣
∣

r2ℓ
ℓ

∫ 2rℓL

1
ψKℓ(ψ)||ϕ̃iℓ||2L2(B̃1)

dψ

∣
∣
∣
∣
≪ L2

ℓ
r4ℓ ||ϕ̃iℓ||2L2(B̃1)

∫ 2

0
ρ dρ≪ Lr4ℓ ||ϕ̃iℓ||∞||ϕ̃iℓ||L1(B̃1)

(5.12)

and
∣
∣
∣
∣

r2ℓ
ℓ

∫ 1

0
ψKℓ(ψ)||ϕ̃iℓ||2L2(B̃1)

dψ

∣
∣
∣
∣
≪ r2ℓ

ℓ

∫ 1

0
||ϕ̃iℓ||2L2(B̃1)

dψ (5.13)

which is dominated by (5.12) and the thesis follows.

5.2 Proof of Theorem 2.2 (Central Limit Theorem)

We split this section in more subsections to make our argument clearer. Firstly, in 5.2.1
we show that the nodal length and the integral of H4(Tℓ(x)) in the shrinking spherical
cap are fully correlated; secondly, in 5.2.2 we compute the fourth cumulant of the “local”
sample trispectrum in order to apply the Fourth Moment Theorem ([23], Theorem 5.2.6)
and to conclude the proof of the Central Limit Theorem in 5.2.3.

5.2.1 Correlation between Zℓ,rℓ and Mℓ,rℓ (Proof of Proposition 3.3)

Here we show the asymptotic equivalence (in the L2(Ω)-sense) of the nodal length Zℓ,rℓ
and the trispectrum

∫

Brℓ
H4(Tℓ(x)) dx. In [20], the case of the full sphere was considered

and it was established that, as ℓ→ +∞,

Corr(Z(Tℓ);Mℓ) = 1 +O

(
1

log ℓ

)

,

where Mℓ is the integral of H4(Tℓ(x)) on S2. In decreasing domains the full correlation
still holds. Let us define the sequence of centered random variables Mℓ,rℓ as in (3.10). To
prove Proposition 3.3 we shall need Proposition 3.4 and the lemma below.
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Lemma 5.2. The covariance between Zℓ,rℓ and Mℓ,rℓ, as ℓ→ ∞, is given by

Cov(Zℓ,rℓ ;Mℓ,rℓ) =
1

256
r2ℓ log rℓℓ+O(r2ℓ ). (5.14)

Putting together Lemma 5.2, Proposition 3.4 and Theorem 2.1, Proposition 3.3 is
easily proved:

Corr(Zℓ,rℓ;Mℓ,rℓ) =
Cov(Zℓ;rℓ ;Mℓ;rℓ)

√
Var(Zℓ;rℓ)Var(Mℓ;rℓ)

= 1 +O

(
1

log rℓℓ

)

.

Hence, we need to prove Lemma 5.2 and Proposition 3.4. In order to do that we define
the 2-point cross correlation function Jℓ(ψ, 4). We shall write x̄ = (0, 0) for the North
Pole and y(θ) = (0, θ) for the points on the meridian where ϕ = 0. Then,

Jℓ(ψ; 4) =
[

−1

4

√

ℓ(ℓ+ 1)

2

1

4!

]

× 8π2

L
E

[

Ψℓ(x̄, 4)H4

(

Tℓ

(

y

(
ψ

L

)))]

(5.15)

(see the supplement article [31], Section A.1, for the definition of Ψℓ(x̄, 4) and see also
[20]). The following result is proved in [20], Proposition 3.1.

Proposition 5.3. For any constant C > 0, uniformly over ℓ we have, for 0 < ψ < C,

Jℓ = O(ℓ), (5.16)

and, for C < ψ < Lπ2 ,

Jℓ(ψ, 4) =
1

64

1

ψ sin(ψ/L)
+

5

64

cos 4ψ

ψ sin(ψ/L)
− 3

16

sin(2ψ)

ψ sin(ψ/L)
+O

(
1

ψ2 sin(ψ/L)

)

+O

(
1

ℓψ sin(ψ/L)

)

.

(5.17)

Proof of Lemma 5.2. In the supplement article [31], Lemma B.2, we show that

Cov(Zℓ,rℓ ,Mℓ,rℓ) = lim
i→∞

∫ 2rℓℓ

0
Jℓ(ψ, 4)Wϕi

ℓ

(
ψ

L

)

dψ,

where Jℓ(ψ; 4) is the two point cross-correlation function defined in (5.15). Then, to
compute this integral we split it in:

I1 :=

∫ 1

0
Jℓ(ψ, 4)Wϕi

ℓ

(
ψ

L

)

dψ and I2 :=

∫ 2rℓL

1
Jℓ(ψ, 4)Wϕi

ℓ

(
ψ

L

)

dψ;

exploiting (4.4) it follows that

I1 =

∫ 1

0
Jℓ(ψ, 4)Wϕi

ℓ

(
ψ

L

)

dψ ≪ r2ℓ
ℓ

∫ 1

0
|Jℓ(ψ, 4)|ψ||ϕ̃iℓ||2∞ dψ (5.18)
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and thanks to (5.16), we have,

I1 ≪
r2ℓ
L

∫ 1

0
ℓψ||ϕ̃iℓ||2∞ dψ = O||ϕ̃i

ℓ||∞(r2ℓ ),

as ℓ→ ∞. Regarding I2, equation (4.3) implies

I2 =||ϕ̃iℓ||2L2(B̃1)

r2ℓ
4πL

∫ 2rℓL

1
Jℓ(ψ, 4)ψ dψ +O||ϕ̃i

ℓ||∞,V (ϕ̃i
ℓ)

(∫ 2rℓL

1
Jℓ(ψ, 4)rℓ

ψ2

L2
dψ

)

+O||ϕ̃i
ℓ||∞

(∫ 2rℓL

1
Jℓ(ψ, 4)r2ℓ

ψ3

L3
dψ

)

;

(5.19)

thanks to Lemma 7.2, it is easy to see that the second and the third terms of (5.19) are,
respectively, given by

O||ϕ̃i
ℓ||∞,V (ϕ̃i

ℓ)

(
rℓ
L

∫ 2rℓℓ

1
P2(ψ) dψ

)

= O||ϕ̃i
ℓ||∞,V (ϕ̃i

ℓ)
(r2ℓ ),

and

O||ϕ̃i
ℓ||∞

(
r2ℓ
ℓ2

∫ 2rℓℓ

1

P2(ψ)

ψ2
ψ3 dψ

)

= O||ϕ̃i
ℓ||∞

(
r2ℓ
ℓ
(2rℓℓ− 1)2

)

= O||ϕ̃i
ℓ||∞(r4ℓ ),

where P2(ψ) is defined in (7.4). Finally, (7.6) applied to the first term of (5.19) leads to

I2 =
||ϕ̃iℓ||2L2(B̃1)

256π
r2ℓ log(2rℓL) +O(r2ℓ )

and hence the conclusion of the lemma follows.

Proposition 3.4 is easily seen as a corollary of Proposition 3.5 and Proposition 3.6 as
follows.

Proof of Proposition 3.4 assuming Proposition 3.5 and Proposition 3.6 . LetMϕi
ℓ defined

as in (3.13); since Mϕ is linear in ϕ, we have that

E[(Mϕi
ℓ −Mℓ,rℓ)

2] = E[(Mϕi
ℓ−1Brℓ )2]

and applying Proposition 3.6 to the function ϕiℓ−1Brℓ
and doing similar computations we

did in (5.2), we get

|Var(Mϕi
ℓ)−Var(Mℓ,rℓ)| ≤ |E[(Mϕi

ℓ−1Brℓ )2]|+ 2|E[(Mϕi
ℓ −Mℓ,rℓ)

2]1/2E[M2
ℓ;rℓ

]1/2|+

|(E[Mϕi
ℓ ])2 − (E[Mℓ,rℓ ])

2|
which goes to zero, as i → ∞, by the L1 convergence of ϕiℓ and Proposition 3.6. Then,
taking the limit in Proposition 3.5, the thesis follows.
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Let us now prove Proposition 3.5 and Proposition 3.6. We recall that Pℓ is the covari-
ance function of Tℓ and the following expansion for Pℓ(cos

ψ
L )

4 is given in [32], Lemma 3.9:
for ℓ ≥ 1 and any constant C > 0, C < ψ < πL/2,

Pℓ(cos(ψ/L))
4 =

3
2 − 2 sin(2ψ) − 1

2 cos(4ψ)

π2ℓ2 sin(ψ/L)2
+O

(
1

ψ3

)

. (5.20)

Recall also that, for 0 < ψ < πL
2 , as ℓ→ ∞,

∣
∣
∣
∣
Pℓ(cos

ψ

L
)

∣
∣
∣
∣
= O

(
1√
ψ

)

, (5.21)

(see (7.8), see also [32]).

Proof of Proposition 3.5. The idea of the proof is quite similar to the one in Proposition
3.1; actually, we write the variance of Mϕi

ℓ as

Var(Mϕi
ℓ) = Var

[

− 1

4

√

ℓ(ℓ+ 1)

2

1

4!

∫

S2

ϕiℓ(x)H4(Tℓ(x)) dx

]

=
1

16

ℓ(ℓ+ 1)

2

1

4!2
E

[ ∫

S2

ϕiℓ(x)H4(Tℓ(x)) dx

∫

S2

ϕiℓ(y)H4(Tℓ(y)) dy

]

=

=
1

16

ℓ(ℓ+ 1)

2

1

4!2

∫

S2×S2

E[H4(Tℓ(x))H4(Tℓ(y))]ϕ
i
ℓ(x)ϕ

i
ℓ(y) dx dy

=
1

16

ℓ(ℓ+ 1)

2

1

4!2
4!

∫

S2×S2

Pℓ(〈x, y〉)4ϕiℓ(x)ϕiℓ(y) dxdy,

(5.22)

where in the last passage we exploited property (A.1) of the supplement article [31].
Employing Fubini, (5.22) is equal to

1

16

ℓ(ℓ+ 1)

2

1

4!
8π2

∫ 2rℓ

0
Pℓ(cos ρ)

4Wϕi
ℓ(ρ) dρ. (5.23)

Changing variable ρ =
ψ

L
and splitting the integral, (5.23) is equal to

8π2

16

ℓ(ℓ+ 1)

2L

1

4!

∫ 1

0
Pℓ

(

cos
ψ

L

)4

Wϕi
ℓ

(
ψ

L

)

dψ

+
8π2

16

ℓ(ℓ+ 1)

2L

1

4!

∫ 2rℓL

1
Pℓ

(

cos
ψ

L

)4

Wϕi
ℓ

(
ψ

L

)

dψ

(5.24)

In view of (4.4), the first integral in (5.24) is

O||ϕ̃i
ℓ||∞

(∫ 1

0
Pℓ

(

cos
ψ

L

)4

ψr2ℓ dψ

)

; (5.25)

we bound |Pℓ(x)| with 1 and then we obtain that (5.25) is O||ϕ̃i
ℓ||∞(r2ℓ ). To compute the

second integral in (5.24), we exploit (4.3) to get
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1

16

ℓ(ℓ+ 1)

2

1

4!
8π2

r2ℓ
L4π

∫ 2rℓL

1
Pℓ

(

cos
ψ

L

)4 ψ

L
||ϕ̃iℓ||2L2(B̃1)

dψ

︸ ︷︷ ︸

(i)

+O||ϕ̃i
ℓ||∞,V (ϕ̃i

ℓ)

(
1

16

ℓ(ℓ+ 1)

2L

1

4!
8π2

rℓ
L2

∫ 2rℓL

1
Pℓ

(

cos
ψ

L

)4

ψ2 dψ

︸ ︷︷ ︸

(ii)

+O||ϕ̃i
ℓ||∞

(
1

16

ℓ(ℓ+ 1)

2

1

4!
8π2

r2ℓ
L

∫ 2rℓL

1
Pℓ

(

cos
ψ

L

)4 ψ3

L3
dψ

)

︸ ︷︷ ︸

(iii)

.

(5.26)

Now, the leading term is

(i) =
1

16

ℓ(ℓ+ 1)

2

1

4!
2π||ϕ̃iℓ||2L2(B1)

r2ℓ
L2

∫ 2rℓL

1
Pℓ

(

cos
ψ

L

)4

ψ dψ (5.27)

and thanks to Lemma 7.7 and Lemma 7.4, (i) is

=
||ϕ̃iℓ||L2(B̃1)

256π
r2ℓ log(rℓℓ).

(5.28)

With similar calculations, it is easy to verify that (ii) is O||ϕ̃i
ℓ||∞,V (ϕ̃i

ℓ)
(r2ℓ ) and (iii) is

O||ϕ̃i
ℓ||∞(r2ℓ ) and hence the conclusion of the proposition follows.

We prove now Proposition 3.6.

Proof of Proposition 3.6. In a similar way to the proof of Proposition 3.2, we can write

E[Mϕi
ℓ(Tℓ)

2] = O

(
ℓ(ℓ+ 1)

L

∫ 2rℓL

0
Pℓ

(

cos
ψ

L

)4

Wϕi
ℓ

(
ψ

L

)

dψ

)

. (5.29)

Splitting [0, 2rℓℓ] = [0, 1] ∪ [1, rℓℓ], for ψ ∈ [0, 1], we can bound |Pℓ(x)| ≤ 1,∀x ∈ [−1, 1]
and exploiting (4.4), we get that

O

(

ℓ

∫ 1

0
P 4
ℓ

(

cos
ψ

L

)

Wϕi
ℓ

(
ψ

L

)

dψ

)

= O

(

r2ℓ ||ϕ̃iℓ||2∞
∫ 1

0
ψ dψ

)

= O

(

r2ℓ ||ϕ̃iℓ||∞
)

. (5.30)

Moreover, (5.21), Lemma 7.4 and (4.3) imply that

O

(

ℓ

∫ 2rℓL

1
P 4
ℓ

(

cos
ψ

L

)

Wϕi
ℓ

(
ψ

L

)

dψ

)

= O

(
r2ℓ ℓ

ℓ

∫ 2rℓL

1
ψPℓ

(

cos
ψ

L

)4

||ϕ̃iℓ||2L2(B̃1)
dψ

)

= O

(

r2ℓ ||ϕ̃iℓ||2L2(B̃1)

∫ 2rℓL

1

1

ψ2
ψ dψ

)

= O
(

r2ℓ ||ϕ̃iℓ||∞||ϕ̃iℓ||L1(B̃1)
log rℓℓ

)

.

(5.31)

Since (5.30) is dominated by (5.31), the conclusion of the Proposition follows.
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5.2.2 Fourth cumulant of the fourth chaotic component

In light of the orthogonality of the chaotic components, the full correlation between Zℓ,rℓ
and Mℓ,rℓ implies that

Corr(Mℓ,rℓ ;Proj(Zℓ,rℓ |C4)) = 1 +O

(
1

log rℓℓ

)

.

Now to establish the validity of the CLT for the sequence Zℓ,rℓ, we prove first that it
holds for Mℓ,rℓ . In order to do that we appeal to the Fourth Moment Theorem ([23],
Theorem 5.2.6), which states that, for random variables belonging to a Wiener chaos it is
sufficient to show that the fourth cumulant divided by the square of the variance tends to
zero to conclude that the CLT holds. Hence we investigate in the lemma below the fourth
cumulant of hℓ,rℓ,4 (defined in 3.11).

Lemma 5.4. Let hℓ,rℓ,4 defined as (3.11), as ℓ→ ∞,

cum4{hℓ,rℓ,4} = O

(
r4ℓ
ℓ4

log rℓℓ

)

. (5.32)

Proof. Following [21], in order to find a bound for the fourth cumulant of hℓ,rℓ,4, we need
to control the following two quantities A1 and A2 (see the supplement article [31], Section
A.2 and [21] for details):

A1 =

∫

(Brℓ
)4
Pℓ(〈x1, x2〉)Pℓ(〈x1, x3〉)3Pℓ(〈x3, x4〉)Pℓ(〈x2, x4〉)3 µ(dx1)µ(dx2)µ(dx3)µ(dx4),

A2 =

∫

(Brℓ
)4
Pℓ(〈x1, x2〉)2Pℓ(〈x1, x3〉)2Pℓ(〈x3, x4〉)2Pℓ(〈x2, x4〉)2 µ(dx1)µ(dx2)µ(dx3)µ(dx4),

where µ(dxi) denotes Lebesgue measure on the sphere. Let us focus on A1; its absolute
value is bounded by

∫

(Brℓ
)4
|Pℓ(cos d(x1, x2))|

∣
∣Pℓ(cos d(x1, x3))

3
∣
∣ |Pℓ(cos d(x3, x4))| ×

×
∣
∣Pℓ(cos d(x2, x4))

3
∣
∣µ(dx1)µ(dx2)µ(dx3)µ(dx4).

(5.33)

Arguing as in [24], we use the inequality: xayb ≤ xa+b + ya+b, where x, y are positive, to
obtain that (5.33) can be bounded by

∫

(Brℓ
)4
|Pℓ(cos d(x2, x4))|3 |Pℓ(cos d(x3, x4))| |Pℓ(cos d(x1, x2))|4 µ(dx1)µ(dx2)µ(dx3)µ(dx4)

+

∫

(Brℓ
)4
|Pℓ(cos d(x2, x4))|3 |Pℓ(cos d(x3, x4))| |Pℓ(cos d(x1, x3))|4 µ(dx1)µ(dx2)µ(dx3)µ(dx4).

(5.34)
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Let us focus on the first term of (5.34). It is simple to check that, for any x2 ∈ Brℓ
∫

Brℓ

|Pℓ(cos d(x1, x2))|4 µ(dx1) ≤
∫

B2rℓ

|Pℓ(cos d(N,x1))|4 µ(dx1),

where N denotes the North Pole (note the doubling of the radius in B2rℓ). Since |Pℓ(x)| ≤
1, for x ∈ [0, 1], we have that 1

L

∫ 1
0 Pℓ(cos

ψ
L )

q ψ
L dψ = O( 1

ℓ2
), ∀q ≥ 1; then by Hilb’s

asymptotics (see Lemma 7.6)
∫

B2rℓ

|Pℓ(cos d(N,x1))|4 µ(dx1) ≤ Const× 1

ℓ2

∫ 2ℓrℓ

C

1

ψ
dψ +O

(
1

ℓ2

)

≤ Const× log rℓℓ

ℓ2
+O

(
1

ℓ2

)

and similarly
∫

Brℓ

|Pℓ(cos d(x3, x4))| µ(dx3) ≤
∫

B2rℓ

|Pℓ(cos d(N,x3))|µ(dx3)

≤ Const× 1

ℓ2

∫ 2ℓrℓ

C

√

ψdψ +O

(
1

ℓ2

)

≤ Const× r
3/2
ℓ√
ℓ
+O

(
1

ℓ2

)

,

∫

Brℓ

|Pℓ(cos d(x2, x4))|3 µ(dx2) ≤
∫

B2rℓ

|Pℓ(cos d(N,x2))|3 µ(dx2)

≤ Const× 1

ℓ2

∫ 2ℓrℓ

C

1√
ψ
dψ +O

(
1

ℓ2

)

≤ Const× r
1/2
ℓ√
ℓ3

+O

(
1

ℓ2

)

,

while obviously ∫

Brℓ

µ(dx4) = O(r2ℓ ).

It follows that
∫

(Brℓ
)4
|Pℓ(cos d(x1, x2))|

∣
∣Pℓ(cos d(x1, x3))

3
∣
∣ |Pℓ(cos d(x3, x4))| ×

×
∣
∣Pℓ(cos d(x2, x4))

3
∣
∣µ(dx1)µ(dx2)µ(dx3)µ(dx4) = O

(

r4ℓ
log rℓℓ

ℓ4

)

,

as needed. Equivalent computations give the same bound for the second term in (5.34).
As far as the term A2 is concerned, we need to bound

∫

(Brℓ
)4

∣
∣Pℓ(cos d(x1, x2))

2
∣
∣
∣
∣Pℓ(cos d(x1, x3))

2
∣
∣
∣
∣Pℓ(cos d(x3, x4))

2
∣
∣×

×
∣
∣Pℓ(cos d(x2, x4))

2
∣
∣µ(dx1)µ(dx2)µ(dx3)µ(dx4).

(5.35)
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The same strategy we have applied to A1 leads (5.35) to be bounded by

∫

(Brℓ
)4
|Pℓ(cos d(x1, x2))|4

∣
∣Pℓ(cos d(x3, x4))

2
∣
∣ |Pℓ(cos d(x2, x4))|2 µ(dx1)µ(dx2)µ(dx3)µ(dx4)

+

∫

(Brℓ
)4
|Pℓ(cos d(x1, x3))|4

∣
∣Pℓ(cos d(x3, x4))

2
∣
∣ |Pℓ(cos d(x2, x4))|2 µ(dx1)µ(dx2)µ(dx3)µ(dx4)

and since
∫

Brℓ

Pℓ(cos d(x3, x4))
2 µ(dx3) ≤

∫

B2rℓ

|Pℓ(cos d(N,x3))|2 µ(dx3)

≤ Const× 1

ℓ2

∫ 2rℓL

C
dψ +O

(
1

ℓ2

)

≤ Const× rℓ
ℓ
+O

(
1

ℓ2

)

,

we obtain that

A2 = O

(

r2ℓ ×
rℓ
ℓ

rℓ
ℓ

log rℓℓ

ℓ2

)

= O

(
r4ℓ log rℓℓ

ℓ4

)

and the conclusion of the lemma follows.

5.2.3 Proof of Theorem 2.2

From Lemma 5.4 we conclude that

cum4(Mℓ,rℓ) = O

(

r4ℓ log(rℓℓ)

)

(5.36)

and, in view of Proposition 3.4, the Fourth Moment Theorem ([23], Theorem 5.2.6) implies
that

dW (Mℓ,rℓ , Z) ≤ C

√

cum4(Mℓ,rℓ)

Var(Mℓ,rℓ)
2
= O

(
1√

log rℓℓ

)

,

where Z ∼ N (0, 1) and C is an explicit constant. Defining

M̃ℓ,rℓ :=
Mℓ,rℓ

√
Var(Mℓ,rℓ)

, and Z̃ℓ,rℓ :=
Zℓ,rℓ

√
Var(Zℓ,rℓ)

,

it follows that, as ℓ→ ∞,

dW (Z̃ℓ,rℓ , Z) ≤ dW (M̃ℓ,rℓ , Z) +

√

E[Z̃ℓ,rℓ − M̃ℓ,rℓ]
2 = O

(
1√

log rℓℓ

)

.
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6 Further Result: Correlation between Zℓ,rℓ and Z(Tℓ) (proof

of Proposition 2.3)

As we have already said in the introduction, contrary to the 2-dimensional torus, the
nodal length on the total sphere and the one on its subregions are not correlated; indeed
we prove here Proposition 2.3. Before doing that, we compute the covariance between
Zℓ,rℓ and Z(Tℓ) in the lemma here below.

Lemma 6.1. The covariance between Zℓ,rℓ and Z(Tℓ) is given by

Cov(Zℓ,rℓ ,Z(Tℓ)) =
|Brℓ |
|S2| Var(Z(Tℓ)).

Proof. The proof of this lemma follows from the field’s rotation invariance. Indeed, let
consider Br the ball of radius r, for any r > 0; we shall write the covariance as

E[Zℓ,r · Z(Tℓ)] = E

[ ∫

S2

||∇(Tℓ(x))||δ(Tℓ(x)) dx
∫

Br

||∇Tℓ(y)||δ(Tℓ(y)) dy
]

=

∫

S2×Br

E[||∇Tℓ(x)||||∇Tℓ(y)||δ(Tℓ(x))δ(Tℓ(y))] dxdy

=

∫

S2×Br

K̃ℓ(x, y) dxdy = |Br|
∫

S2

K̃ℓ(N, y) dy.

(6.1)

Then, taking r = rℓ and r = π, Br = Brℓ and Br = S2, respectively, we get

E[Zℓ,rℓ · Z(Tℓ)] = |Brℓ |
∫

S2

K̃ℓ(N, y) dy (6.2)

and

Var[Z(Tℓ)] = |S2|
∫

S2

K̃ℓ(N, y) dy (6.3)

and the conclusion of the lemma follows.

Proof of Proposition 2.3. By definition, the correlation is

Corr(Zℓ,rℓ ;Z(Tℓ)) =
Cov(Zℓ,rℓ ;Z(Tℓ))

√
Var(Zℓ,rℓ)

√

Var(Z(Tℓ))
(6.4)

and Lemma 6.1 implies that

Corr(Zℓ,rℓ ;Z(Tℓ)) =
|Brℓ |
|S2|

√

Var(Z(Tℓ))
√

Var(Zℓ,rℓ)
=

2π(1 − cos rℓ)

4π

√

Var(Z(Tℓ))
√

Var(Zℓ,rℓ)

=
(1− cos rℓ)

2

√

Var(Z(Tℓ))
√

Var(Zℓ,rℓ)
;

(6.5)
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in view of Theorem 2.1 and (1.2), it results that

Corr(Zℓ;rℓ;Z(Tℓ)) =
1− cos rℓ

2

√
√
√
√

1
32 log ℓ+O(1)

r2ℓ
256 log ℓrℓ +O(r2ℓ )

=
1− cos rℓ

2rℓ

√

log ℓ

log(rℓℓ)
+O(1)

√
8

=
1− cos rℓ

2r2ℓ

√

r2ℓ
log ℓ

log rℓℓ
+O(r2ℓ )

√
8 = O

(
√

rℓ2
log ℓ

log rℓℓ

)

.

(6.6)

Now, to prove that this quantity goes to zero, we note that, either rℓ ≥ 1√
ℓ
, then

∣
∣
∣
∣
r2ℓ

log ℓ

log rℓℓ

∣
∣
∣
∣
≤

∣
∣
∣
∣
r2ℓ

log ℓ

log
√
rℓ

∣
∣
∣
∣
= 2r2ℓ

which goes to zero because rℓ → 0; or if rℓ ≤ ℓ−1/2, since rℓℓ→ +∞, we can bound log rℓℓ
from below for ℓ large and get

∣
∣
∣
∣
r2ℓ

log ℓ

log rℓℓ

∣
∣
∣
∣
= O(r2ℓ log ℓ) = O

(
1

ℓ
log ℓ

)

= o(1).

7 Technical tools

In this section we collect some results exploited in the previous computations.
For the purpose of the present paper, let us note the following result.

Lemma 7.1. For 1 < ψ < rℓℓ, as ℓ→ ∞,

Kℓ −
1

4
=

1

2π

sin(2ψ)

ψ
+
P1(ψ)

ψ2
+O

(
1

ψ3

)

,

where P1(ψ) is the trigonometric polynomial given by

P1(ψ) =
1

256π2
+

9

32π
cos(2ψ) +

27

64π2
sin(2ψ) − 75

256π2
cos(4ψ). (7.1)

Proof. Let us consider the expansion in (5.3) holding uniformly for C < ψ <
πL

2
. In the

regime [1, rℓℓ], rℓℓ = o(L) and the terms sin(ψ/L) appearing in all the denominators can
be replaced by

sin
ψ

L
+O

(
ψ3

L3

)

. (7.2)
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Hence, we have

Kℓ(ψ)−
1

4
=

[
sin 2ψ

2πℓ
+

1

256π2ℓψ
+

9cos 2ψ

32πψℓ
+

27
64 sin 2ψ − 75

256 cos(4ψ)

π2ℓψ sin(ψ/L)

]
1

ψ
L +O(ψ3/L3)

+

+O

(
1

ψ3
+

1

ℓψ

)

=

[
sin 2ψ

2πψ
+

1

256π2ψ2
+

9cos 2ψ

32πψ2
+

27
64 sin 2ψ − 75

256 cos(4ψ)

π2ψ2 sin(ψ/L)

]

+O

(
1

ψ3

)

(7.3)

Denoting P1(ψ) the trigonometric polynomial given in (7.1) the conclusion of the lemma
follows.

Lemma 7.2. For 1 < ψ < rℓℓ, as ℓ→ ∞,

Jℓ(ψ; 4) = L
P2(ψ)

ψ2
+O

(
1

ψ3

)

,

where the trigonometric polynomial P2(ψ) is

P2(ψ) =
1

64
+

5

64
cos 4ψ − 3

16
sin(2ψ). (7.4)

Proof. Similarly to the proof of Lemma 7.1, we substitute sin(ψ/L) with its Taylor ex-
pansion (7.2) in equation (5.17), holding for C < ψ < Lπ2 , and defining P2(ψ) as in (7.4)
the thesis follows.

Other useful results for our computations are given by the following lemmas.

Lemma 7.3. As x→ ∞, ∫ x

1

1

ψ2
dψ = O(1).

Lemma 7.4. Let P (ψ) = a0 + a1 cosψ + · · ·+ am cos(mψ) + b1 sin(ψ) + · · ·+ bm sin(mψ)
a general trigonometric polynomial. Then, as x→ +∞,

∫ x

1

P (ψ)

ψ
dψ = a0 log(x) +O(1).

Proof. We have that

∫ x

1

P (ψ)

ψ
dψ =

∫ x

1

a0 + a1 cosψ + · · ·+ am cos(mψ) + b1 sin(ψ) + · · ·+ bm sin(mψ)

ψ
dψ.

Let us focus, for example, on
∫ x

1
a1

cos(ψ)

ψ
dψ.
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Integrating by parts, it becomes

a1

[
sin(ψ)

ψ
−

∫ x

1

sinψ

ψ2
dψ

]x

1

and thanks to the Lemma 7.3 and to the fact that the function sinψ is bounded, it is
O(1), as ℓ→ ∞. In the same way, it is possible to see that, as ℓ→ ∞,

∫ x

1

a2 cos 2ψ + · · ·+ am cos(mψ) + b1 sin(ψ) + · · · + bm sin(mψ)

ψ
dψ = O(1)

and hence the leading term of
∫ x
1
P (ψ)
ψ dψ is given by

∫ x

1

a0
ψ
dψ = a0 log(x).

As a consequence of Lemma 7.4, we get the following corallary.

Corollary 7.5. As ℓ→ ∞,

∫ rℓℓ

1

(

Kℓ(ψ)−
1

4

)

ψdψ =
1

256π2
log(rℓℓ) +O(1) (7.5)

and
1

L

∫ rℓℓ

1
Jℓ(ψ)ψdψ =

1

64
log(rℓℓ) +O(1). (7.6)

Lemma 7.6 (Hilb’s Asymptotics (formula (8.21.17) on page 197 in [30])).

Pℓ(cosφ) =

(
φ

sinφ

)1/2

J0((ℓ+ 1/2)φ) + δ(φ), (7.7)

uniformly for 0 ≤ φ ≤ π/2, where J0 is the Bessel function of order 0, defined as J0(x) =
∑∞

k=0

(−1)kx2k

22k(k!)2
, and the error term is

δ(φ) ≪
{

φ1/2O(ℓ−3/2), Cℓ−1 < φ < π/2

φ2O(1), 0 < φ < Cℓ−1,

where C > 0 is any constant and the constants involved in the “O”-notation depend on C
only.

In particular, for θ ∈ [0, π/2],

Pℓ(cos θ) ≪
1√
ℓθ
. (7.8)
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Actually, changing variable Ψ = Lθ, with L = ℓ+ 1
2 , we have that

Pℓ

(

cos

(
ψ

ℓ+ 1/2

))

∼ J0(ψ)

and

J0(ψ) =

√

2

π

cos(ψ − π/4)√
ψ

+O

(
1

ψ3/2

)

(see also [21]).
Lemma 7.6 implies (5.21) and the following result can be easily seen.

Lemma 7.7. For 1 < ψ < rℓℓ, as ℓ→ ∞,

Pℓ(cos(ψ/L))
4 =

P3(ψ)

ψ2
+O

(
1

ψ3

)

,

where

P3(ψ) =
3

2π2
− 2

π2
sin(2ψ) − 1

2π2
cos(4ψ).
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Euler-Poincaré characteristic of random spherical eigenfunctions, Ann. Probab., 46, 6,
3188-3288.

[11] Cammarota, V.; Marinucci, D.; Wigman, I. (2016) Fluctuations of the Euler-Poincaré
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Supplementary Material

A Background Material

A.1 Wiener Chaos

In this part we recall the notion of Wiener chaos mentioned in the introduction. For a
complete discussion see [23], Chap. 2.2. Let us consider the sequence {Hq}q∈N of Hermite
polynomials on R, defined as follows

H0 = 1

Hq(t) = tHq−1(t)−H ′
q−1(t), q ≥ 1.

It is useful to recall the following property: let Z1, Z2 jointly Gaussian; then, for all
q1, q2 ≥ 0

E[Hq1(Z1)Hq2(Z2)] = q1!δ
q2
q1E[Z1Z2]. (A.1)

Now, we recall that the family H = {Hq, q ≥ 0} is a complete orthogonal system in the
space of square integrable functions L2(γ), where γ denotes the standard Gaussian density
on R. We define the space χ to be the closure in L2(P ) of all real finite linear combinations
of random variables ξ of the form ξ = zaℓm + z̄(−1)ℓaℓ,−m, z ∈ C and aℓm independent
Gaussian random variables with the condition āℓm = (−1)ℓaℓ,−m. The space χ is a real
centered Gaussian Hilbert subspace of L2(P ).
We define the space of constants C0 := R ⊂ L2(P ) and for q ≥ 1 an integer, the q−th
Wiener chaos Cq associated with χ is the closure of all real finite linear combinations of
random variables of the type

Hp1(ξ1)Hp2(ξ2) · · ·Hpk(ξk)

k ≥ 1, where the integers p1, . . . , pk ≥ 0 are such that p1 + · · ·+ pk = q and (ξ1, . . . , ξk) is
a standard real Gaussian vector extracted from χ. It is possible to prove that Cq ⊥ Cm
in L2(P ) for q 6= m and that

L2(Ω, σ(χ), P ) =

∞⊕

q=0

Cq.

Then, every real-valued functional F of χ can be (uniquely) represented as a series, con-
verging in L2, of the form

F =

∞∑

q=0

Proj(F |Cq)

where the Proj(F |Cq) is the projection of F onto Cq (in particular Proj(F |C0) = E[F ]).
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A.1.1 Chaotic expansion for nodal lengths

In the same lines of the case of the sphere (see [20], [26]) an integral representation for the
nodal length Zℓ,rℓ can be given by

Zℓ,rℓ =
∫

Brℓ

δ0(Tℓ(x))||∇Tℓ(x)|| dx,

where δ0 denotes the dirac delta function and || · || the standard Euclidean norm in R2.
This representation can be shown to hold almost surely in Ω and it is shown hold in L2(Ω)
(see [20]). The L2 expansion of nodal lengths takes the form (see [20], [19] and [26])

Zℓ,rℓ − E[Zℓ,rℓ] =
√

ℓ(ℓ+ 1)

2

∞∑

q=2

q
∑

u=0

u∑

k=0

αk,u−kβq−u
k!(u− k)!(q − u)!

×
∫

Brℓ

Hq−u(Tℓ(x))Hk

(
∂1;xTℓ(x)

√

ℓ(ℓ+ 1)/2

)

Hu−k

(
∂2;xTℓ(x)

√

ℓ(ℓ+ 1)/2

)

dx

=

∞∑

q=2

∫

Brℓ

Ψℓ(x; q) dx,

where

Ψℓ(x; q) =

√

ℓ(ℓ+ 1)

2

q
∑

u=0

u∑

k=0

αk,u−kβq−u
k!(u− k)!(q − u)!

Hq−u(Tℓ(x))Hk

(
∂1;xTℓ(x)

√

ℓ(ℓ+ 1)/2

)

×Hu−k

(
∂2;xTℓ(x)

√

ℓ(ℓ+ 1)/2

)

dx.

(A.2)

In spherical coordinates (θ, ϕ) and for x = (θx, ϕx),

∂1;x =
∂

dθ

∣
∣
∣
∣
θ=θx

, ∂2;x =
1

sin θ

∂

dϕ

∣
∣
∣
∣
θ=θx,ϕ=ϕx

.

In particular, denoting as Z̃ℓ,rℓ =
Zℓ,rℓ − E[Zℓ,rℓ ]
√

Var(Zℓ,rℓ)
, the projection of the nodal length on

the fourth-order chaos has the expression

Proj(Z̃ℓ,rℓ |C4) =

∫

Brℓ

Ψℓ(x; 4) dx

=

√

ℓ(ℓ+ 1)

2

{
α0,0β4
4!

∫

Brℓ

H4(Tℓ(x)) dx+
α2,0β2
2!2!

∫

Brℓ

H2(Tℓ(x))H2

(
∂1;xTℓ(x)

√

ℓ(ℓ+ 1)/2

)

dx

+
α4,0β4
4!

∫

Brℓ

H4

(
∂1;xTℓ(x)

√

ℓ(ℓ+ 1)/2

)

dx+
α2,2β0
2!2!

∫

Brℓ

H2

(
∂1;xTℓ(x)

√

ℓ(ℓ+ 1)/2

)

H2

(
∂2;xTℓ(x)

√

ℓ(ℓ+ 1)/2

)

dx

+
α0,2β2
2!2!

∫

Brℓ

H2(Tℓ(x))H2

(
∂2;xTℓ(x)

√

ℓ(ℓ+ 1)/2

)

dx+
α0,4β0
4!

∫

Brℓ

H4

(
∂2;xTℓ(x)

√

ℓ(ℓ+ 1)/2

)

dx

}

.
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A.2 On the Fourth cumulant of the fourth chaotic projection

Let us consider in this section the following lemma proved in the paper.

Lemma A.1. Let hℓ,rℓ,4 defined as

hℓ,rℓ,4 :=

∫

Brℓ

H4(Tℓ(x)) dx, (A.3)

then, as ℓ→ ∞,

cum4{hℓ,rℓ,4} = O

(
r4ℓ
ℓ4

log rℓℓ

)

. (A.4)

We stated at the beginning of the proof of Lemma 5.4 that, to bound the fourth
cumulant of hℓ,rℓ,4, it is sufficient to study the two integrals:

A1 =

∫

B4
rℓ

Pℓ(〈x1, x2〉)Pℓ(〈x1, x3〉)3Pℓ(〈x3, x4〉)Pℓ(〈x2, x4〉)3 µ(dx1)µ(dx2)µ(dx3)µ(dx4)

and

A2 =

∫

B4
rℓ

Pℓ(〈x1, x2〉)2Pℓ(〈x1, x3〉)2Pℓ(〈x3, x4〉)2Pℓ(〈x2, x4〉)2 µ(dx1)µ(dx2)µ(dx3)µ(dx4),

where µ(dxi) denotes Lebesgue measure on the sphere. To see that, we can follow exactly
the argument in [21], which we report for completeness. Hence, we recall that a diagram is
a graph with (α1+ · · ·+αp) vertexes labelled by 1, . . . , p, such that each vertex has degree
1. The set of all such graphs γ is denoted by Γ(α1, . . . , αp). We denote by ΓC(α1, . . . , αp)
the graphs which are connected.

Given a diagram γ, let η(γ) = ηij(γ) ∈ Z(
p
2
) the vector whose

(p
2

)
elements ηi,j(γ) (i < j)

are the number of edges between i and j in the graph γ. The vector η satisfies
∑

ij ηi,j = 2q.
The following lemma is proved in [21].

Lemma A.2. [[21], Lemma 2.1] Let γ ∈ ΓC(q, q, q, q) with arbitrary q ≥ 1, and η = η(γ).
Let e = (i, j) any edge in γ and e′ = (i′, j′) the unique edge with vertexes disjoint with e,
so that {i, j, i′, j′} = {1, 2, 3, 4}. Then ηe = ηe′ .

It is shown in [21] that the fourth cumulant can be computed by

cum4

[ ∫

Brℓ

H4(Tℓ(x)) dx

]

=
∑

γ∈Γc(4,4,4,4)

M(η(γ))

where for a vector η ∈ Z6
≥0,

M(η) =

∫

B4
rℓ

∏

i<j

Pℓ(〈xi, yj〉)ηi,j µ(dx),
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where µ(dx) = µ(dx1)µ(dx2)µ(dx3)µ(dx4). Now, we use Lemma A.2 and the Cauchy-
Schwartz inequality to reduce the number of different angles; when we apply the latter
inequality, it is advantageous to pair up angles corresponding to disjoint edges in the
diagram. In the end all the configuarations can be bounded by ones where η has one of
the following two shapes

η = (2, 2, 2, 2, 0, 0)

or
η = (1, 3, 1, 3, 0, 0).

Then the proof of Lemma A.1 reduces to the control of the two integrals A1 and A2. An-
other way to prove this reduction follows by [25], Proposition 11.2, where it is proved that
it is sufficient to bound only the terms corresponding to circular diagrams (i.e. diagrams,
all of whose rows are linked with precisely two other rows) to establish the CLT.

B Technical tools

B.1 L2 approximation for nodal lengths

Following the same idea and notation in [20], we define

Zℓ,rℓ;ε :=
∫

Brℓ

||∇fℓ(x)||χε(Tℓ(x)) dx. (B.1)

We show the L2 convergence of the nodal length in the lemma here below.

Lemma B.1. Let Zℓ,rℓ;ε be defined as in (B.1), we have that, as ε→ 0,

lim
ε→0

E[|Zℓ,rℓ;ε −Zℓ,rℓ|2] = 0. (B.2)

Proof. This argument follows closely [20] and it is included for completeness. Hence, the
nodal length is defined almost-surely by

lim
ε→0

∫

Brℓ

χε(Tℓ(x))||∇Tℓ(x)|| dx

and from the standard argument ([29], Lemma 3.1) the almost-sure convergence follows.
Indeed, since χε(·) = 1

2ε1[−ε,ε](·) is integrable and Tℓ is smooth, we have thanks to the
co-area formula ([1], p.169)

∫

Brℓ

χε(Tℓ(x))||∇Tℓ(x)|| dx =

∫

R

{∫

T−1

ℓ (s)∩Brℓ

χε(Tℓ(x)) dx

}

ds.

Since

χε(Tℓ(x)) =

{

0 for x : Tℓ(x) > ε
1
2ε for x : Tℓ(x) ≤ ε
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and the function s → Vol[Tℓ(s)
−1 ∩ Brℓ ] is continuous for regular (Morse) functions, we

obtain
∫

R

{∫

T−1

ℓ (s)∩Brℓ

χε(Tℓ(x)) dx

}

ds =
1

2ε

∫ ε

−ε
Vol

[
T−1
ℓ (s) ∩Brℓ

]
ds→ Vol

[
T−1
ℓ (0) ∩Brℓ

]
,

as ε → 0. We now show that the convergence occurs also in the L2 sense. To this aim,
since the convergence holds almost surely, it is sufficient to prove that

lim
ε→0

E[Z2
ℓ,rℓ,ε

] = E[Z2
ℓ,rℓ

].

Note that,

E[Z2
ℓ,rℓ,ε

] = E

[{∫

Brℓ

{χε(Tℓ(x))||∇Tℓ(x)||} dx
}2]

= E

[{∫

R

∫

{x∈Brℓ
:Tℓ(x)=u}

{χε(Tℓ(x))||∇Tℓ(x)||} dx
}2]

= E

[{∫

R
Zℓ,rℓ(u)χε(Tℓ(u)) du

}2]

.

(B.3)

The application u → E[{Zℓ,rℓ(u)}2], where Zℓ,rℓ(u) = len({x ∈ S2 ∩ Brℓ : Tℓ(x) = u}), is
continuous, where

E[Z2
ℓ,rℓ

(u)]=

∫

Brℓ
×Brℓ

E [||∇Tℓ(x1)||||∇Tℓ(x2)|||Tℓ(x1)=u, Tℓ(x2)=u]φTℓ(x1),Tℓ(x2)(u, u) dx1dx2

=8π2
∫ 2rℓ

0
E [||∇Tℓ(N)||||∇Tℓ(y(ρ))|||Tℓ(N)=u, Tℓ(y(ρ))=u]φTℓ(N),Tℓ(y(ρ))(u, u)Wrℓ(ρ) dρ.

(B.4)

To check the continuity, it is enough to show that the Dominated Convergence Theorem
holds; we first note that

φTℓ(N),Tℓ(y(ρ))(u, u)Wrℓ(ρ) ≤ φTℓ(N),Tℓ(y(ρ))(0, 0)Wrℓ(ρ) =
1

2π
√

1− Pℓ(cos θ)2
Wrℓ(ρ)

which isO(1) uniformly in ρ sinceWrℓ(ρ) ∼ r3ℓ W̃1(
ρ
rℓ
) (where∼means that limρ→0

Wrℓ
(ρ)

r3ℓ W̃1(
ρ
rℓ

)
=

1) and

W̃1(
ρ

rℓ
) =

1

8π2
ρ

rℓ

∫ 2π

0
ϕ̃x(ρ cosφ, ρ sinφ) dφdx

with ϕ̃x(ρ cosφ, ρ sin φ) a bounded function. On the other hand the evaluation of

E[||∇Tℓ(N)||||∇Tℓ(y(ρ))|||Tℓ(N) = u, Tℓ(y(ρ)) = u]

is given in [20] and it is seen to be uniformly bounded over ρ. Then, the Dominated
Convergence Theorem holds. It follows that
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E[Z2
ℓ,rℓ

] ≤ lim inf
ε→0

E

[{∫

Brℓ

{χε(Tℓ(x))||∇Tℓ(x)||} dx
}2]

= lim inf
ε→0

E[L2
ℓ,rℓ;ε

] ≤ lim sup
ε→0

E[Z2
ℓ,rℓ;ε

]

= lim sup
ε→0

E

[{∫

Brℓ

{χε(Tℓ(x))||∇Tℓ(x)||} dx
}2]

= lim sup
ε→0

E

[{∫

R
{Zℓ,rℓ(u)χε(u)} du

}2]

≤ lim sup
ε→0

∫

R
E[Z2

ℓ,rℓ
(u)]χε(u) du = E[Z2

ℓ,rℓ
].

(B.5)

B.2 On the proof of Lemma 5.2

In this section we want to prove the following result.

Lemma B.2.

Cov(Zℓ,rℓ ,Mℓ,rℓ) = lim
i→∞

∫ 2rℓℓ

0
Jℓ(ψ, 4)Wϕi

ℓ(
ψ

L
) dψ,

where

Jℓ(ψ; 4) =
[

− 1

4

√

ℓ(ℓ+ 1)

2

1

4!

]

× 8π2

L
E

[

Ψℓ(x̄, 4)H4

(

Tℓ

(

y

(
ψ

L

)))]

,

where we wrote x̄ = (0, 0) for the North Pole and y(ρ) = (0, ρ) for the points on the
meridian where ϕ = 0.

Proof. To prove this lemma we can follow the same steps as in [20], proof of Theorem 1.2..
We report them for completeness. Let us define

Ψε(x) := ||∇fℓ(x)||χε(Tℓ(x)), χε(·) =
1

2ε
1[−ε,ε](·).

Ψε(x) admits the L2(Ω) expansion

Ψε(x) = E[Ψε(x)] +
∞∑

q=2

Ψℓ;ε(x; q);

moreover, we established in Lemma B.1 the L2(Ω) convergence

lim
ε→0

∫

Brℓ

Ψℓ(x) dx = lim
ε→0

∫

Brℓ

||∇fℓ(x)||χε(Tℓ(x)) dx = Zℓ,rℓ.
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Note also that Ψℓ(x),H4(Tℓ(y)) are both in L2(S2×Ω) and they are isotropic and thus

Cov(Zℓ,rℓ;ε;Mℓ,rℓ) = −1

4

√

ℓ(ℓ+ 1)

2

1

4!
Cov

(∫

Brℓ

Ψε(x) dx,

∫

Brℓ

H4(Tℓ(y)) dy

)

= −1

4

√

ℓ(ℓ+ 1)

2

1

4!
E

[
∫

Brℓ

Ψε(x) dx

∫

Brℓ

H4(Tℓ(y)) dy

]

= −1

4

√

ℓ(ℓ+ 1)

2

1

4!

∫

Brℓ

∫

Brℓ

E[Ψε(x)H4(Tℓ(y))] dxdy

= −1

4

√

ℓ(ℓ+ 1)

2

1

4!

∫

S2×S2

E





∞∑

q=2

Ψℓ;ε(x, q)H4(Tℓ(y))



 1Brℓ
(x)1Brℓ

(y) dxdy

= −1

4

√

ℓ(ℓ+ 1)

2

1

4!

∫

S2×S2

E[Ψℓ;ε(x, 4)H4(Tℓ(y))]1Brℓ
(x)1Brℓ

(y) dxdy

= lim
i→∞

−1

4

√

ℓ(ℓ+ 1)

2

1

4!

∫

S2×S2

E[Ψℓ;ε(x, 4)H4(Tℓ(y))]ϕ
i
ℓ(x)ϕ

i
ℓ(y) dxdy

(B.6)

in the last passage we exploited the L1(S2) convergence of ϕiℓ to 1Brℓ
. Indeed,

∣
∣
∣
∣

∫

S2×S2

E[Ψℓ;ε(x, 4)H4(Tℓ(y))]ϕ
i
ℓ(x)ϕ

i
ℓ(y) dxdy

−
∫

S2×S2

E[Ψε(x)H4(Tℓ(y))]1Brℓ
(x)1Brℓ

(y) dxdy

∣
∣
∣
∣

≤
∫

S2×S2

|E[Ψℓ;ε(x, 4)H4(Tℓ(y))]||[ϕiℓ(x)ϕiℓ(y)− 1Brℓ
(x)1Brℓ

(y)]| dxdy

≤
∫

S2×S2

|E[Ψℓ;ε(x, 4)H4(Tℓ(y))]||ϕiℓ(x)− 1Brℓ
(x)|ϕiℓ(y) dxdy

+

∫

S2×S2

|E[Ψℓ;ε(x, 4)H4(Tℓ(y))]||ϕiℓ(y)− 1Brℓ
(y)|1Brℓ

(x) dxdy

(B.7)

and since we can bound |E[Ψε(x)H4(Tℓ(y))]| (see [20], Proposition 3.1), 1Brℓ
(x) and ϕiℓ(y),

(B.7) goes to zero as i→ ∞.
Now, applying Fubini, equation (B.6) is equal to

lim
i→∞

− 1

4

√

ℓ(ℓ+ 1)

2

1

4!
8π2

∫ 2rℓ

0
E[Ψℓ;ε(x, 4)H4(Tℓ(y))]W

ϕi
ℓ(ρ) dρ. (B.8)

In [20], Proposition 3.1, it is proved the term E[Ψℓ;ε(x, 4)H4(Tℓ(y))] can be computed
explicitly and it is easily seen to be absolutely bounded for fixed ℓ, uniformly over ε. Hence,
by the Dominated Convergence Theorem we may exchange the limit and the integral to
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obtain

Cov(Zℓ,rℓ,Mℓ,rℓ) = lim
ε→0

Cov(Zℓ,rℓ;ε,Mℓ,rℓ)

= lim
ε→0

lim
i→∞

−1

4

√

ℓ(ℓ+ 1)

2

1

4!
× 8π2

∫ 2rℓ

0
E[Ψℓ,ε(x̄, 4)H4(Tℓ(y(ρ)))]W

ϕi
ℓ(ρ)dρ

= lim
i→∞

−1

4

√

ℓ(ℓ+ 1)

2

1

4!
× 8π2

∫ 2rℓ

0
lim
ε→0

E[Ψℓ,ε(x̄, 4)H4(Tℓ(y(ρ)))]W
ϕi
ℓ(ρ)dρ

= lim
i→∞

−1

4

√

ℓ(ℓ+ 1)

2

1

4!
× 8π2

∫ 2rℓ

0
E[Ψℓ(x̄, 4)H4(Tℓ(y(ρ)))]W

ϕi
ℓ(ρ)dρ

= lim
i→∞

∫ 2rℓℓ

0
Jℓ(ψ, 4)Wϕi

ℓ(
ψ

L
)dψ.

(B.9)

B.3 Auxiliary function property

Let us recall the following definitions:

Wϕℓ(ρ) :=
1

8π2

∫

d(x,y)=ρ
ϕℓ(x)ϕℓ(y) dx dy x, y ∈ S2; (B.10)

W̃1

(

ρ
1

rℓ

)

:=
1

8π2

∫

d(x,y)= ρ
rℓ

ϕ̃ℓ(rℓx)ϕ̃ℓ(rℓy) dx dy x, y ∈ R2. (B.11)

We give now the proof of the following lemma, which gives relation (3.6) of the main
article.

Lemma B.3. Let Wrℓ(·) and W̃1(·) as in (B.10) and (B.11), respectively; then,

Wrℓ(ρ) = r3ℓ W̃1

(

ρ
1

rℓ

)

(1 +O(ρ2)) (B.12)

as rℓ → 0 uniformly for ρ ∈ [0, 2rℓ].

Proof. We set Dρ := {x ∈ Brℓ : Bρ(x) ⊂ Brℓ}; then

Wrℓ(ρ) =
1

8π2

∫

Dρ

len{y ∈ Brℓ : d(x, y) = ρ} dx+ 1

8π2

∫

Brℓ
−Dρ

len{y ∈ Brℓ : d(x, y) = ρ} dx;

we denote

A :=
1

8π2

∫

Dρ

len{y ∈ Brℓ : d(x, y) = ρ} dx

and

B :=
1

8π2

∫

Brℓ
−Dρ

len{y ∈ Brℓ : d(x, y) = ρ} dx.
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A is easily computed to be

A =
1

8π2

∫

Dρ

len{y ∈ Brℓ : d(x, y) = ρ} dx =
1

8π2
2π sin ρ|Dρ|

=
1

8π2
2π sin ρ · 2π(1− cos(rℓ − ρ)).

(B.13)

Let us define also D̃ρ/rℓ := {x ∈ B̃1 : B̃ρ/rℓ(x) ⊂ B̃1}; likewise, we write

W̃1

(

ρ
1

rℓ

)

= Ã+ B̃;

where

Ã :=
1

8π2

∫

D̃ρ/rℓ

len

{

y ∈ B̃1 : d(x, y) =
ρ

rℓ

}

dx

and

B̃ :=
1

8π2

∫

B̃1−D̃ρ/rℓ

len

{

y ∈ B̃1 : d(x, y) =
ρ

rℓ

}

dx.

Note that

Ã =
1

8π2
2π

ρ

rℓ
|D̃ρ/rℓ | =

1

8π2
2π

ρ

rℓ
π

(

1− ρ

rℓ

)2

;

then, using the Taylor expansion of the sine and cosine as rℓ → 0 (and so ρ→ 0), we get

A =
1

8π2
2πρ(1 +O(ρ2))π · (rℓ − ρ)2(1 +O(ρ)2 +O(r2ℓ ))

=
1

8π2
2π

ρ

rℓ
· π

(

1− ρ

rℓ

)2

r3ℓ (1 +O(ρ2))(1 +O(ρ)2 +O(r2ℓ ))

= r3ℓ Ã(1 +O(ρ2) +O(r2ℓ )).

(B.14)

Now we prove that
|B − B̃| ≪ O(r4ℓ + ρ4)

and thus (B.12) follows. So,

|B − B̃| ≤

≤
∣
∣
∣
∣

1

8π2

∫

Brℓ
−Dρ

len{y ∈ Brℓ : d(x, y) = ρ} dx− 1

8π2

∫

B̃1−D̃ρ/rℓ

len{y ∈ B̃1 : d(x, y) =
ρ

rℓ
} dx

∣
∣
∣
∣

=

∣
∣
∣
∣

1

8π2

∫

Brℓ
−Dρ

len{y ∈ Brℓ : d(x, y) = ρ} dx− 1

8π2

∫

B̃rℓ
−D̃ρ

len{y ∈ B̃rℓ : d(x, y) = ρ} dx
∣
∣
∣
∣
,

(B.15)

where B̃rℓ ⊂ R2 is the disc of radius rℓ and D̃ρ := {x ∈ B̃rℓ : B̃ρ(x) ⊂ B̃rℓ}; then (B.15)
results to be

≪ 2π(1 − cos rℓ)− 2π(1− cos(rℓ − ρ))− [πr2ℓ − π(rℓ − ρ)2] ≪ O(r4ℓ ) +O(ρ4).
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As a consequence we can prove the following result.

Corollary B.4. Let Wϕi
ℓ(·) and W̃ ϕ̃i

ℓ(·) defined as (B.10) and (B.11), respectively; ϕiℓ
satisfies

ϕiℓ → 1Brℓ
in L1(S2),

V (ϕiℓ) → V (1Brℓ
) and

||ϕiℓ||∞ ≤ ||1Brℓ
||∞;

(B.16)

and W̃ ϕ̃i
ℓ := ϕiℓ ◦ exp . Then as ℓ→ ∞,

Wϕi
ℓ(ρ) = r3ℓ W̃

ϕ̃i
ℓ

(

ρ
1

rℓ

)

(1 +O(ρ2)), (B.17)

as rℓ → 0 uniformly for ρ ∈ [0, 2rℓ].

Proof. We have that

|Wϕi
ℓ(ρ)− r3ℓ W̃

ϕ̃i
ℓ(ρ

1

rℓ
)(1 +O(ρ2))| ≤ |Wϕi

ℓ(ρ)−Wrℓ(ρ)|

+ |Wrℓ(ρ)− r3ℓ W̃1(ρ
1

rℓ
)(1 +O(ρ2))|

+ |r3ℓ W̃1(ρ
1

rℓ
)(1 +O(ρ2))− r3ℓ W̃

ϕ̃i
ℓ(ρ

1

rℓ
)(1 +O(ρ2))|

(B.18)

and the former and the latter quantities of (B.18) go to zero for the L1 convergence of
ϕiℓ → 1Brℓ

and ϕ̃iℓ → 1B̃1
; in fact

|Wϕi
ℓ(ρ)−Wrℓ(ρ)| ≤

∫

S2×S2

|ϕiℓ(x)ϕiℓ(y)− 1Brℓ
(x)1Brℓ

(y)| dxdy

≤
∫

S2×S2

|ϕiℓ(x)||ϕiℓ(y)− 1Brℓ
(y)| dxdy

+

∫

S2×S2

|1Brℓ
(y)||ϕiℓ(x)− 1Brℓ

(x)| dxdy → 0.

(B.19)

and the conclusion of the lemma follows.

C Further result

C.1 The second chaotic component

In the lemma below, we show that the second chaotic component of the nodal length has
lower order than the fourth one.

Lemma C.1. The second component of the chaos expansion of Zℓ,rℓ is, as ℓ→ ∞,

P roj(Zℓ,rℓ |C2) = O(r2ℓ ).

41



Proof. Theorem 1.1 shows that Var(Zℓ,rℓ) ∼ log rℓℓ and Proposition 2.3 shows that the
orthogonal projection of Zℓ,rℓ along a well chosen vector in the fourth chaos is close to

Zℓ,rℓ itself, up to a normalized error of O

(
1

log rℓℓ

)

. Thus, the projection of Zℓ,rℓ onto

any chaos of order different from four has variance

O

(
1

log(rℓℓ)
×Var(Zℓ,rℓ)

)

= O(r2ℓ ).
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