We study the correlation between the total number of critical points of random spherical harmonics and the number of critical points with value in any interval I ⊂ ℝ. We show that the correlation is asymptotically zero, while the partial correlation, after controlling the random L2-norm on the sphere of the eigenfunctions, is asymptotically one. Our findings complement the results obtained by Wigman (2012) and Marinucci and Rossi (2021) on the correlation between nodal and boundary length of random spherical harmonics.

On the correlation between critical points and critical values for random spherical harmonics

Todino, A. P.
2022-01-01

Abstract

We study the correlation between the total number of critical points of random spherical harmonics and the number of critical points with value in any interval I ⊂ ℝ. We show that the correlation is asymptotically zero, while the partial correlation, after controlling the random L2-norm on the sphere of the eigenfunctions, is asymptotically one. Our findings complement the results obtained by Wigman (2012) and Marinucci and Rossi (2021) on the correlation between nodal and boundary length of random spherical harmonics.
File in questo prodotto:
File Dimensione Formato  
CT.pdf

file ad accesso aperto

Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 266.12 kB
Formato Adobe PDF
266.12 kB Adobe PDF Visualizza/Apri
CammarotaTodinoTViMS_1.pdf

file disponibile agli utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 343.89 kB
Formato Adobe PDF
343.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/165044
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact