We study noncommutative deformations of the wave equation in curved backgrounds and discuss the modification of the dispersion relations due to noncommutativity combined with curvature of spacetime. Our noncommutative differential geometry approach is based on Drinfeld twist deformation, and can be implemented for any twist and any curved background. We discuss in detail the Jordanian twist - giving κ-Minkowski spacetime in flat space - in the presence of a Friedman-Lema tre-Robertson-Walker (FLRW) cosmological background. We obtain a new expression for the variation of the speed of light, depending linearly on the ratio E ph/E LV (photon energy/Lorentz violation scale), but also linearly on the cosmological time, the Hubble parameter and inversely proportional to the scale factor.
Dispersion relations in κ-noncommutative cosmology
Aschieri P.
;Borowiec A.;
2021-01-01
Abstract
We study noncommutative deformations of the wave equation in curved backgrounds and discuss the modification of the dispersion relations due to noncommutativity combined with curvature of spacetime. Our noncommutative differential geometry approach is based on Drinfeld twist deformation, and can be implemented for any twist and any curved background. We discuss in detail the Jordanian twist - giving κ-Minkowski spacetime in flat space - in the presence of a Friedman-Lema tre-Robertson-Walker (FLRW) cosmological background. We obtain a new expression for the variation of the speed of light, depending linearly on the ratio E ph/E LV (photon energy/Lorentz violation scale), but also linearly on the cosmological time, the Hubble parameter and inversely proportional to the scale factor.File | Dimensione | Formato | |
---|---|---|---|
JCAP04(2021)025.pdf
Open Access dal 11/04/2022
Tipologia:
Versione Editoriale (PDF)
Licenza:
DRM non definito
Dimensione
565.18 kB
Formato
Adobe PDF
|
565.18 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.