We consider the buckling eigenvalue problem for a clamped plate in the annulus. We identify the first eigenvalue in dependence of the inner radius, and study the number of nodal domains of the corresponding eigenfunctions. Moreover, in order to investigate the asymptotic behavior of eigenvalues and eigenfunctions as the inner radius approaches the outer one, we provide an analytical study of the buckling problem in rectangles with mixed boundary conditions.

The buckling eigenvalue problem in the annulus

Buoso D.
;
2020-01-01

Abstract

We consider the buckling eigenvalue problem for a clamped plate in the annulus. We identify the first eigenvalue in dependence of the inner radius, and study the number of nodal domains of the corresponding eigenfunctions. Moreover, in order to investigate the asymptotic behavior of eigenvalues and eigenfunctions as the inner radius approaches the outer one, we provide an analytical study of the buckling problem in rectangles with mixed boundary conditions.
File in questo prodotto:
File Dimensione Formato  
Buoso_Parini_CCM.pdf

file ad accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 468.29 kB
Formato Adobe PDF
468.29 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/114756
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact