We consider the buckling eigenvalue problem for a clamped plate in the annulus. We identify the first eigenvalue in dependence of the inner radius, and study the number of nodal domains of the corresponding eigenfunctions. Moreover, in order to investigate the asymptotic behavior of eigenvalues and eigenfunctions as the inner radius approaches the outer one, we provide an analytical study of the buckling problem in rectangles with mixed boundary conditions.
The buckling eigenvalue problem in the annulus
Buoso D.
;
2020-01-01
Abstract
We consider the buckling eigenvalue problem for a clamped plate in the annulus. We identify the first eigenvalue in dependence of the inner radius, and study the number of nodal domains of the corresponding eigenfunctions. Moreover, in order to investigate the asymptotic behavior of eigenvalues and eigenfunctions as the inner radius approaches the outer one, we provide an analytical study of the buckling problem in rectangles with mixed boundary conditions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Buoso_Parini_CCM.pdf
file ad accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
468.29 kB
Formato
Adobe PDF
|
468.29 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.