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Abstract. We consider the buckling eigenvalue problem for a clamped plate in the annulus. We identify

the first eigenvalue in dependence of the inner radius, and study the number of nodal domains of the

corresponding eigenfunctions. Moreover, in order to investigate the asymptotic behavior of eigenvalues

and eigenfunctions as the inner radius approaches the outer one, we provide an analytical study of the

buckling problem in rectangles with mixed boundary conditions.

1. Introduction

If we consider the eigenvalue problem for the Dirichlet Laplacian on a bounded domain Ω ⊂ RN ,

(1.1)

{
−∆u = λu, in Ω,

u = 0, on ∂Ω,

the first eigenvalue λD1 (Ω), differently from higher ones, exhibits some remarkable properties. Notably,
the first eigenvalue is simple, and every associated eigenfunction does not change sign in Ω. Higher order
eigenvalue problems, on the other hand, present a different situation. For instance, in the case of the
Dirichlet Bilaplacian

(1.2)

{
∆2u = λu, in Ω,

u = ∂νu = 0, on ∂Ω,

where ν denotes the unit outer normal, the first eigenfunction might be sign-changing. This is the case
when Ω is a square [9], or an elongated ellipse [16]. More generally, if the domain has corners, then all
the eigenfunctions oscillate in the corner (see [10,11,19]). In addition, the first eigenvalue might even be
multiple: this is indeed the case for annuli with small inner radii (see [12]).

Strangely enough, the buckling eigenvalue problem

(1.3)

{
∆2u = −λ∆u, in Ω,

u = ∂νu = 0, on ∂Ω,

presents features that puts it in between the Dirichlet Laplacian and the Dirichlet Bilaplacian. In fact,
while it could be thought of as a Laplacian applied on the space ∇H2

0 (Ω) ⊂ (H1(Ω))N , and even the Weyl
limit is the same as for problem (1.1), the arguments that are used to prove simplicity and positivity
of the first eigenfunction do not apply here. Indeed, as for the Bilaplacian, all the eigenfunctions of the
buckling problem oscillate in corners (see [19]).

The fact that the first eigenfunction of higher order operators can be sign changing, as well as the
lack of a maximum principle, has sparkled a lot of interest in the literature towards the understanding of
how a solution can change sign or in which cases the so-called “positivity preserving property” holds or,
equivalently, under which assumptions the Green function is positive. While for second order problems
these questions are trivial because of the maximum principle and other important tools such as the Krein-
Rutman theory, their higher order counterparts have shown to be extremely difficult to approach and,
apart from the case of corners [19], only very specific cases have been successfully studied, usually for the
clamped plate problem (we refer the reader to [17] for an extensive discussion). Even estimates for the
first eigenvalue on a rectangle turn out to be much more difficult to obtain than those for the Laplacian,
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see [6, 22]. Regarding the buckling problem (1.3), even though the results in [19] still apply, very little
is known for shapes different from balls, where the spectrum and the eigenspaces can be completely
characterized in terms of Bessel functions.

In this paper, we study the buckling eigenvalues on annuli with varying inner radius. While it is possible
to write the eigenfunctions by means of Bessel functions and harmonic polynomials, the eigenvalues are
solutions to complicated transcendental equations and therefore it is difficult to order them in an analytical
way. For this reason, with the aid of the software MathematicaTM, we compute the lower eigenvalues in
order to find the smallest one (i.e., the first one). In particular, since all eigenfunctions can be written as
the product of a radial function and a spherical harmonic, this allows to give an estimate of how many
nodal domains the first eigenfunction presents.

In [12], the authors show that the first eigenvalue of problem (1.2) on an annulus is double and the
corresponding eigenfunctions of problem (1.2) has one nodal line corresponding to the diameter, if the
inner radius is small enough. Conversely, when the inner radius increases, after the threshold, the first
eigenvalue becomes simple and with a (strictly) positive eigenfunction. We discover that the behavior of
the buckling problem (1.3) is totally different, since the first eigenvalue appears to be always multiple,
while the number of nodal domains of the corresponding eigenfunctions is increasing with respect to the
inner radius. Even though this result at first may be unexpected when compared with the analogues for
(1.1) and (1.2), we remark that higher order problems present a great variety of properties that, in many
situations, have yet to be unveiled.

When the annulus shrinks towards the circumference, we observe that the number of diametric nodal
lines increases as well. In particular, as these nodal lines are proliferating, we obtain an increase in nodal
domains that are annular sectors but close (in a suitable sense) to rectangles. It makes sense then to
study the buckling problem on a shrinking rectangle, with Dirichlet boundary conditions (u = ∂νu = 0)
on the long edges and Navier ones (u = ∆u = 0) on the shrinking edges. Even though the two problems
are not equivalent, the buckling problem on the rectangle with mixed boundary conditions is much easier
to study and can provide qualitative information on the behavior of the eigenfunctions on a shrinking
annulus. We note that biharmonic problems on rectangles with mixed boundary conditions have been
studied recently in [15], in relation with the stability of suspension bridges.

Another interesting limiting problem is provided by the punctured disk, which is obtained when the
inner radius converges to zero. Differently from the Laplacian, the punctured disk is not equivalent to
the full disk for Bilaplacian problems such as (1.2) or (1.3). The spectrum in this limiting case was
already studied for the Dirichlet Bilaplacian in [12] numerically, and in [11] analytically, by means of an
intricate study of the eigenvalues and using tables of values of zeroes of Bessel functions. Indeed, while
the first eigenfunction of the Dirichlet Bilaplacian on the disk contains the Bessel function J0, the first
eigenfunction on the punctured disk contains instead J1. While the behavior of problem (1.3) differs
from that of (1.2) when the annulus shrinks, at the other end the two coincide, even though the two first
eigenfunctions are not related.

As problem (1.1) can be used to model vibrating elastic membranes, also problems (1.2) and (1.3)
are of relevance in the theory of mechanics of deformable solids, and they are derived from the so-called
Kirchhoff-Love model of plates (see [24]). In particular, the Dirichlet Bilaplacian (1.2) is also called
“vibrating clamped plate problem” as it models the vibration of a clamped plate, while the buckling
problem (1.3) is related with the critical tension that leads to the deformation of a clamped plate. Hence,
the interest for these problems comes not only from the mathematical point of view, but also from
applications. As a consequence, shedding light on difficult questions like the ones we consider in this
paper is more than mathematical speculation, since it can provide new ideas for the several applications
that make use of these problems.

The paper is organized as follows. In Section 2 we set up the problem and state some of the basic
properties of the eigenvalues. In Section 3 we compute the eigenfunctions and the eigenvalues of the
buckling problem (1.3) on an annulus and on the punctured disk, while Section 4 is devoted to the
numerical calculations. In Section 5 we focus on the buckling problem on a rectangle with mixed boundary
conditions. Finally, in Section 6 we collect a number of observations and open questions.
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2. Preliminaries

Let Ω ⊂ RN be a bounded domain (i.e., an open connected set). We say that λ ∈ R is an eigenvalue of
the buckling problem (1.3) if there exists a function u ∈ H2

0 (Ω) \ {0} (the eigenfunction) which satisfies
the equation in the weak sense, namely,∫

Ω

∆u∆v = λ

∫
Ω

∇u∇v, for every v ∈ H2
0 (Ω).

The buckling eigenvalue problem admits an increasing sequence of (strictly) positive eigenvalues of finite
multiplicity diverging to infinity,

0 < λ1(Ω) ≤ λ2(Ω) ≤ ... ≤ λk(Ω)→ +∞, as k → +∞

, (see e.g., [7, Lemma 2.1]). Additionally, the k-th eigenvalue can be characterized variationally as

λk(Ω) = min
V⊆H2

0 (Ω)
dimV=k

max
u∈V \{0}

∫
Ω
|∆u|2∫

Ω
|∇u|2

.

This characterization implies the monotonicity of λk with respect to set inclusion:

(2.1) Ω1 ⊂ Ω2 ⇒ λk(Ω2) ≤ λk(Ω1).

Problem (1.3) also enjoys the following scaling property: for t > 0, if we set

tΩ := {x ∈ RN |x/t ∈ Ω},

we have

λk(tΩ) =
1

t2
λk(Ω).

This implies in particular that the shape functional

Ω 7→ λ1(Ω)|Ω| 2N

is scaling invariant.
When Ω = BR ⊂ R2 is a disk of radius R, the eigenfunctions have the form

(2.2) u(r, θ) =

(
Jk(r
√
λ)− Jk(R

√
λ)

Rk
rk

)
e±ikθ,

where (r, θ) are polar coordinates, and the corresponding eigenvalues are

λ =

(
jk+1,t

R

)2

,

for some t ∈ N∗, where jν,t is the t-th zero of the Bessel function Jν .
In particular, for R = 1 the first eigenvalue is

λ1(B1) = j2
1,1 ' 14.6819,

and the associated eigenfunctions are radially symmetric and do not change sign in B1. It is also worth
mentioning that, for convex planar domains, Payne was able to give sharp estimates of λ1(Ω) in terms
of the first two eigenvalues λD1 (Ω) and λD2 (Ω) of the Dirichlet Laplacian (1.1):

λD2 (Ω) ≤ λ1(Ω) ≤ 4λD1 (Ω),

where the first equality holds true when Ω is a disk, and the second one holds true in the limit when Ω
is an infinite strip (see [23]).



4 D. BUOSO AND E. PARINI

3. The annulus and the punctured disk

We turn now to the computation of the solutions of the buckling problem (1.3) in the annulus

Ωa := {x ∈ R2 | a < |x| < 1},

with a ∈ (0, 1). It is classical to show that eigenfunctions are of the form

(3.1) u(r, θ) = v(r)e±ikθ, k ∈ N.

We refer for instance to [13, Section V.5] for the case of the Laplacian. Set µ =
√
λ. As in [14, Lemma

2.1], we have that, if k = 0,

v(r) = AJ0(µr) +BY0(µr) + C +D ln r,

while if k ≥ 1,

(3.2) v(r) = AJk(µr) +BYk(µr) + Crk +Dr−k.

Here Yk is the Bessel function of the second kind of order k.
Using (3.1), the boundary conditions in (1.3) become

v(a), v′(a), v(1), v′(1) = 0,

so that, in the case k = 0, we obtain the following system
AJ0(µ) +BY0(µ) + C = 0
AµJ ′0(µ) +BµY ′0(µ) +D = 0
AJ0(µa) +BY0(µa) + C +D ln a = 0
AµJ ′0(µa) +BµY ′0(µa) +D 1

a = 0

or, in matrix form,

(3.3)


J0(µ) Y0(µ) 1 0
µJ ′0(µ) µY ′0(µ) 0 1
J0(µa) Y0(µa) 1 ln a
µJ ′0(µa) µY ′0(µa) 0 1

a



A
B
C
D

 =


0
0
0
0

 .

Since a solution to (3.3) exists only if the determinant of the matrix is zero, we compute it and, after
using several properties of Bessel functions (see e.g., [1, Ch. 9]), we obtain that it equals

(3.4)
4

πa
+ µ (J0(µ)Y1(µa)− J1(µa)Y0(µ))− µ2 ln a (J1(µ)Y1(µa)− J1(µa)Y1(µ))

+
µ

a
(J0(µa)Y1(µ)− J1(µ)Y0(µa)) .

On the other hand, in the case k ≥ 1, the boundary conditions yield
AJk(µ) +BYk(µ) + C +D = 0
AµJ ′k(µ) +BµY ′k(µ) + Ck −Dk = 0
AJk(µa) +BYk(µa) + Cak +Da−k = 0
AµJ ′k(µa) +BµY ′k(µa) + Ckak−1 −Dka−k−1 = 0

or, in matrix form,

(3.5)


Jk(µ) Yk(µ) 1 1
µJ ′k(µ) µY ′k(µ) k −k
Jk(µa) Yk(µa) ak a−k

µJ ′k(µa) µY ′k(µa) kak−1 −ka−k−1



A
B
C
D

 =


0
0
0
0

 .
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Again, since a solution to (3.5) exists only if the determinant of the matrix is zero, we compute it and,
after using several properties of Bessel functions, we obtain that it equals

(3.6) µ2

(
ak − 1

ak

)
(Jk−1(µ)Yk−1(µa)− Jk−1(µa)Yk−1(µ))− 8k

πa

+ 2kµak−1 (Jk(µa)Yk−1(µ)− Jk−1(µ)Yk(µa)) +
2kµ

ak
(Jk(µ)Yk−1(µa)− Jk−1(µa)Yk(µ)) .

We observe that, while in a ball the ordering of the eigenvalues is directly linked to the ordering of
zeroes of Bessel functions (cf. Section 2), the case of the annulus is much more involved as we would need
to understand how the zeroes of the functions (3.4) and (3.6) interlace. Therefore, for the annulus the
difficulty of ordering the eigenvalues is amplified, and we will do it numerically in Section 4.

If we set a = 0, Ω0 is then a punctured disk, and it is possible to set the buckling problem (1.3) in
Ω0. In this case, though, problem (1.3) has to be interpreted in a slightly different way. We first observe
that, since a point in R2 has positive H2-capacity, but zero H1-capacity, functions in H2

0 (Ω0) must equal
zero at the origin, but their gradient need not vanish. Nevertheless, the gradient of any eigenfunction
is bounded in Ω0. This follows from the fact that eigenfunctions are of the form (3.1) and that their
gradient, as a function of H1(Ω0)2, is absolutely continuous on almost every line passing through the
origin. This readily implies that the boundary conditions for the eigenfunctions translate as

v(0), v(1), v′(1) = 0, v′(0) ∈ R.

We mention that the boundedness of the gradient of eigenfunctions in Ω0 can also be deduced from a
more general result by Mayboroda and Maz’ya [20, Proposition 8.1].

In order to compute the eigenfunctions and the eigenvalues, we need to recall the asymptotic behaviors
of Bessel functions Y around zero (cf. [1, formulas 9.1.11 and 9.1.13]):

Y0(z) =
2

π

(
ln
z

2
+ γEM

)
J0(z) + P0(z),

where γEM is the Euler-Mascheroni constant, and

(3.7) Yk(z) = − 2k

πzk

k−1∑
n=0

(k − n− 1)!

n!

(z
2

)2n

+
2

π
Jk(z) ln

z

2
− zk

2kπ
Pk(z),

where Pk(z) is a power series in z2 for any k ≥ 0. In particular, we use (3.7) to show that, for k ≥ 1, the
coefficients of Yk(r) and r−k in (3.2) must vanish.

For k ≥ 3, this can be easily seen due to the appearance of a singular function of order r2−k in (3.7)
which can not be canceled out. For k = 2, the singularity of Y2 at the origin implies the condition
D = 4

πB; but since

lim
r→0

v(r) = lim
r→0

B

[
Y2(r) +

4

π
r−2

]
= −B

π
,

it follows that B = D = 0. Finally, for k = 1, the behavior of Y1 requires D = 2
πB; but the presence of

the function r 7→ J1(r) ln
(
r
2

)
in the asymptotic development of Y1 implies that B must be zero in order

to guarantee the boundedness of v′. Due to the previous considerations, for k ≥ 1 it must hold

v(r) = Jk(µr)− Jk(µ)rk,

and the corresponding eigenvalues equal those of the full disk. For k = 0, we obtain instead the following
system 

AJ0(µ) +BY0(µ) + C = 0
AµJ ′0(µ) +BµY ′0(µ) +D = 0
A+B 2

π

(
ln µ

2 + γEM

)
+ C = 0

B 2
π +D = 0
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or, in matrix form,

(3.8)


J0(µ) Y0(µ) 1 0
µJ ′0(µ) µY ′0(µ) 0 1

1 2
π

(
ln µ

2 + γEM

)
1 0

0 2
π 0 1



A
B
C
D

 =


0
0
0
0

 .

Once more, since a solution to (3.8) exists only if the determinant of the matrix is zero, we compute
it and, after using several properties of Bessel functions, we obtain that it equals

(3.9)
2

π
(J0(µ)− 2) +

2µ

π
J1(µ)

(
ln
µ

2
+ γEM

)
− µY1(µ).

The first nontrivial zero of (3.9) is µ = 6.6478167. By the considerations above, we deduce that the
first eigenvalue of Ω0 is given by

λ1(Ω0) = j2
2,1 ' 23.3746,

and any associated eigenfunction has exactly two nodal domains, with a diametrical nodal line.

4. Numerics

In this section we analyze how the first eigenvalue changes with respect to the inner radius a of the
annulus Ωa.

In the following we denote by τk(a), for k ∈ N, the smallest eigenvalue of (1.3) in Ωa, associated with
eigenfunctions of the form

u(r, θ) = v(r)e±ikθ.

It is easy to see that, for fixed k, the function

a ∈ [0, 1)→ τk(a)

is monotone increasing.
For some particular values of a, we determined the value of kopt such that τkopt(a) = λ1(Ωa) by means

of the software MathematicaTM. In Table 4, the index kmax denotes the maximum number of cases we
had to check, and it is determined by means of the following algorithm:

(i) Set k = 0, kopt = 0, and compute τk(a).
(ii) Let kmax ∈ N be the smallest index such that τkmax

(0) > τkopt(a). Such an index is well defined,

since τk(0) = j2
k+1,1, where jk+1,1 is the smallest zero of the Bessel function Jk+1, and by

monotonicity of the map a 7→ τk(a).
(iii) If k ≥ kmax, stop the algorithm, and return λ1(Ωa) = τkopt(a).
(iv) If k ≤ kmax − 1, set k = k + 1, and compute τk(a). If τk(a) < τkopt(a), set kopt = k. Return to

(ii).

We observe that, despite the roughness in estimating kmax in (ii), especially when a is close to 1, it
turns out that the algorithm is not too computationally demanding. Moreover, although the index kmax

grows faster than kopt, even for a = 0.995, we still have that kmax ≤ 3kopt.
Table 4 has to be complemented with the information of the unit ball B1. In that case, we have no

kmax, and kopt = 0. As expected from (2.1), the value for
√
λ1(B1) is√

λ1(B1) = j1,1 ' 3.8317,

the lowest of all, and moreover,

λ1|B1| ' 12.038,

again, the lowest of all. It is worth remarking that, in the case of problem (1.1), the well-known Faber-
Krahn inequality tells us that the quantity λD1 (Ω)|Ω| has the ball as the only minimizer (we refer to [18,
Section 3.2] and to [4] where the stability issue is also considered), while a similar statement holds for
the Dirichlet Bilaplacian (1.2) as well (we refer to [3,21]). Unfortunately, this is still a conjecture for the
buckling problem (1.3), known as Szego’s conjecture. For more details on this subject, we refer the reader
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a kmax kopt

√
τkopt(a) =

√
λ1(Ωa) λ1(Ωa)|Ωa|

0.00 1 1 5.13562 82.858

0.05 2 1 6.23824 121.95

0.10 3 1 6.71001 140.03

0.15 3 2 7.06409 153.24

0.20 3 2 7.50246 169.76

0.25 4 2 8.02527 189.69

0.30 4 2 8.63688 213.26

0.35 5 3 9.34321 240.65

0.40 6 3 10.0995 269.17

0.45 6 3 11.0318 304.91

0.50 7 4 12.1553 348.13

0.55 9 4 13.5034 399.56

0.60 10 5 15.2003 464.55

0.65 11 6 17.3833 548.23

0.70 15 7 20.2830 659.15

0.75 19 8 24.3501 814.95

0.80 24 11 30.4382 1047.8

0.82 27 12 33.8219 1177.3

0.84 31 14 38.0521 1339.2

0.86 36 16 43.4894 1547.2

0.88 43 19 50.7402 1824.7

0.90 53 23 60.8901 2213.1

0.91 60 25 67.6582 2472.1

0.92 68 29 76.1145 2795.6

0.93 78 33 86.9885 3211.7

0.94 92 39 101.488 3766.5

0.95 112 47 121.786 4543.1

0.96 142 59 152.234 5708.1

0.97 192 79 202.979 7649.6

0.98 292 119 304.469 11533

0.99 593 239 608.940 23182

0.995 1198 479 1217.880 46481

Table 1. The first eigenvalues and related quantities for various values of a.

to [18, Section 11.3] and the references therein (see also the recent works [2, 5, 8] for shape optimization
results on biharmonic eigenvalues).

In addition, the information that λ1(Ωa) is increasing in a is of no surprise in view of (2.1), indeed it
is expected to diverge to infinity for a→ 1−. The interesting fact is that also λ1(Ωa)|Ωa| is increasing in
a, providing evidence for the validity of Szego’s conjecture.

An interesting question is to determine the constants for the asymptotic behaviors

kopt(a) ∼ ck
1− a

,
√
τkopt(a) ∼ cµ

1− a
as a→ 1−.

Our numerical computations support the claim that ck ' 2.38, and cµ ' 6.0894, yet a conclusive
argument does not seem to be easily achievable.

Moreover, we observe that, for any a, the value of µk(a) is strictly decreasing in k for 1 ≤ k ≤ kopt, and
strictly increasing for k ≥ kopt. In other words, given the particular ordering of the analytical branches
at a = 0, at the other limit a→ 1− they all seem to tend to switch and reverse the ordering. This can be
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already observed for the first five eigenvalues in Figure 1. This phenomenon is particularly interesting,
and in open contrast to what happens in the case of the Dirichlet Bilaplacian (1.2) (cf. [12]).

0.1 0.2 0.3 0.4

5

6

7

8

9

10

11

Figure 1. The analytical branches of the first five eigenvalues for a ∈ [0, 0.4].

We conclude this section with the study of the positivity of the eigenfunctions. While all eigenfunctions
associated with k ≥ 1 are naturally sign-changing due to the angular part, it is still interesting to ask
when the radial part has a definite sign. The eigenfunctions on the ball assume the form (2.2) and it is
easy to see that the eigenfunctions associated with eigenvalues j2

k,1 have positive radial parts, using the
oscillating behavior of the Bessel functions Jk. This behavior is not checked as easily in the case a > 0,
but still we conjecture that the eigenvalues given by the first zeroes of (3.4) and (3.6) have a positive
radial part, as supported by some numerical computations we display in Figure 2.

5. The rectangle

Now we turn to the problem

(5.1)


∆2u = −λ∆u, in Ω`,

u(x, y) = 0, on ∂Ω`,

uy(x, y) = 0, on (0, π)× {−`, `},
uxx(x, y) = 0, on {0, π} × (−`, `),

where Ω` = (0, π) × (−`, `) with ` > 0. We recall that problem (5.1) is linked with the buckling
problem (1.3) in an annulus Ωa as, when a approaches the limit a → 1−, the nodal domains of the first
eigenfunctions are annular sectors that, as the annulus shrinks, are close to rectangles and the boundary
conditions to impose on the nodal domains are those in (5.1). In order to write the solutions of (5.1),
we observe that if we perform an odd reflection of the solution u around the y-axis, then the reflected
function is still in H2, and we can expand it into a Fourier series of the form

u(x, y) =

+∞∑
m=1

hm(y) sinmx.

By regularity theory (see e.g., [17]), since u is smooth in Ω`, so are the coefficients hm. Moreover, the
equation reads as

uxxxx + 2uxxyy + uyyyy = −λ(uxx + uyy),
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(a) k = 1, a = 0.2 (b) k = 2, a = 0.2 (c) k = 3, a = 0.2

(d) k = 3, a = 0.5 (e) k = 4, a = 0.5 (f) k = 5, a = 0.5

(g) k = 5, a = 0.8 (h) k = 11, a = 0.8 (i) k = 13, a = 0.8

Figure 2. The radial part of the eigenfunctions corresponding to τk(a) for various values
of k and a.

and this leads to the following ordinary differential equation for hm:

(5.2) h(iv)
m (y) + (λ− 2m2)h′′m(y) +m2(m2 − λ)hm(y) = 0.

The characteristic polynomial of the equation is

t4 + (λ− 2m2)t2 +m2(m2 − λ) = 0,

and setting z = t2, namely
z2 + (λ− 2m2)z +m2(m2 − λ) = 0,

we see that the roots are z1 = m2 − λ and z2 = m2. We distinguish three cases, according to the sign of
m2−λ. In each case, it will be possible to search for even and odd eigenfunctions separately by exploiting
the linearity of the differential equation and the identity

hm(y) =
hm(y) + hm(−y)

2
+
hm(y)− hm(−y)

2
.

The case λ < m2. The general solution of (5.2) is given by

hm(y) = a coshmy + b sinhmy + c cosh γy + d sinh γy,

where γ =
√
m2 − λ. Its derivative is given by

h′m(y) = am sinhmy + bm coshmy + cγ sinh γy + dγ cosh γy.

Even solutions are of the form
hm(y) = a coshmy + c cosh γy,

and imposing the boundary conditions, we obtain the relations{
a coshm`+ c cosh γ` = 0,

am sinhm`+ cγ sinh γ` = 0.



10 D. BUOSO AND E. PARINI

This system admits a nontrivial solution if and only if

γ tanh γ` = m tanhm`.

However, since the function t 7→ t tanh t` is strictly increasing, we obtain γ = m and hence λ = 0, a
contradiction. If we look for odd solutions of the form

hm(y) = b sinhmy + d sinh γy,

we obtain the relations {
b sinhm`+ d sinh γ` = 0,

bm coshm`+ dγ cosh γ` = 0.

This system admits a nontrivial solution if and only if

tanh γ`

γ
=

tanhm`

m
.

However, since the function t 7→ tanh t`
t is strictly decreasing, we obtain γ = m and hence λ = 0, again a

contradiction. In conclusion, no eigenfunction exists in the case λ < m2.

The case λ = m2. The general solution of (5.2) is given by

hm(y) = a coshmy + b sinhmy + cy + d,

and its derivative by

h′m(y) = am sinhmy + bm coshmy + c.

Even eigenfunctions are of the form

hm(y) = a coshmy + d,

and imposing the boundary conditions we obtain am sinhm` = 0, which implies a = 0 and hence d = 0.
Odd eigenfunctions are of the form

hm(y) = b sinhmy + cy,

and imposing the boundary conditions leads to the system{
b sinhm`+ c` = 0,

bm coshm`+ c = 0.

The system admits a nontrivial solution if and only if

sinhm`−m` coshm` = 0.

However, the function m 7→ sinhm`−m` coshm` is strictly decreasing, and is equal to zero if and only
if m = 0, a contradiction. As a consequence, no eigenfunction exists in the case λ = m2.

The case λ > m2. This case is the most involved. The general solution of (5.2) is given by

hm(y) = a coshmy + b sinhmy + c cos γy + d sin γy,

where γ =
√
λ−m2, and its derivative is given by

h′m(y) = am sinhmy + bm coshmy − cγ sin γy + dγ cos γy.

Even solutions are of the form

hm(y) = a coshmy + c cos γy,

and imposing the boundary conditions, we obtain the relations{
a coshm`+ c cos γ` = 0,

am sinhm`− cγ sin γ` = 0.

This system admits a nontrivial solution if and only if

γ tan γ` = −m tanhm`.
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Let m > 0 be fixed. On each interval of the form (t1, t2) :=

(
1

`

(π
2

+ kπ
)
,

1

`
(π + kπ)

)
, the function

f defined as f(t) := t tan `t is negative, strictly increasing, and satisfies limt→t1 f(t) = −∞, f(t2) = 0.

Therefore, for each k ∈ N there exists a unique γ
(k),even
m ∈

(
1

`

(π
2

+ kπ
)
,

1

`
(π + kπ)

)
such that, for

γ = γ
(k),even
m , the function

hm(y) = coshmy − coshm`

cos γ`
cos γy

is an even, nontrivial solution of (5.2). Observe that for γ ∈
(

1

`
(kπ) ,

1

`

(π
2

+ kπ
))

, where k ∈ N, no

nontrivial even solutions can exist.
Let us now look for odd solutions of the form

hm(y) = b sinhmy + d sin γy.

Imposing the boundary conditions, we obtain the relations{
b sinhm`+ d sin γ` = 0,

bm coshm`+ dγ cos γ` = 0.

This system admits a nontrivial solution if and only if

tan γ`

γ
=

tanhm`

m
.

Let m > 0 be fixed. On each interval of the form (t1, t2) :=

(
1

`
(π + kπ) ,

1

`

(
3

2
π + kπ

))
, the func-

tion f defined as f(t) := tan `t
t is positive, strictly increasing (where defined), and satisfies f(t1) = 0,

limt→t2 f(t) = +∞. Therefore, for each k ∈ N there exists a unique γ
(k),odd
m ∈

(
1

`
(π + kπ) ,

1

`

(
3

2
π + kπ

))
such that, for γ = γ

(k),odd
m , the function

hm(y) = sinhmy − sinhm`

sin γ`
sin γy

is an odd, nontrivial solution of (5.2). Observe that for γ ∈
(

1

`

(π
2

+ kπ
)
,

1

`
(π + kπ)

)
, where k ∈ N,

no nontrivial odd solutions can exist. Moreover, if γ ∈
(

0,
π

2`

)
, one has

tanhm`

m
< 1 <

tan γ`

`
,

and therefore no nontrivial odd solution can exist in this case.
Let us study more closely the function

hm(y) = coshmy − coshm`

cos γ`
cos γy

when γ ∈
( π

2`
,
π

`

)
. We want to prove that hm ≥ 0. Notice that cos γ` < 0, therefore if y ∈

[
0, π2γ

]
, we

clearly have hm(y) > 0. If y ∈
(
π

2γ
, `

]
, it is enough to show that

coshmy

cos γy
≤ coshm`

cos γ`
,

since cos γy < 0. Let us consider the function f defined as

f(t) :=
coshmt

cos γt
.
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We have

f ′(t) =
m sinhmt cos γt+ γ coshmt sin γt

(cos γt)2
.

Hence it is enough to prove that

g(t) := m tanhmt+ γ tan γt ≤ 0

on

(
π

2γ
`, `

]
. On this interval g is increasing, and g(`) = 0. Therefore, g(t) ≤ 0, and f ′(t) ≥ 0, which

implies the claim.
We can summarize the previous findings in the following

Theorem 5.1. The problem 
∆2u = −λ∆u, in Ω,

u(x, y) = 0, for (x, y) ∈ ∂Ω,

uy(x, y) = 0, for y ∈ {−`, `},
uxx(x, y) = 0, for x ∈ {0, π}.

admits a sequence of eigenfunctions uk,m, k, m ∈ N∗, of the form

uk,m(x, y) = hk,m(y) sinmx,

associated to the eigenvalues λk,m = m2 + γ2
k,m, respectively, where

γk,m ∈
(
kπ

2`
,

(k + 1)π

2`

)
.

The function hk,m is a solution of the problem
h(iv)(y) + (λ− 2m2)h′′(y) +m2(m2 − λ)h(y) = 0,

h(−`) = h(`) = 0,

h′(−`) = h′(`) = 0,

for λ = λk,m. Moreover:

(a) if k is odd, then hk,m is even, and if k is even, then hk,m is odd.
(b) If k = 1, then hk,m is strictly positive.

We now study the dependence of the first eigenvalue λ1(Ω`) upon the parameter `. By Theorem 5.1,
it is clear that λ1(Ω`) = λ1,m for some m ∈ N∗. Therefore, it is essential to analyze the function defined
on (0,+∞) as

m 7→ λ1,m = m2 + γ2
1,m.

Without loss of generality, since we can recover any case by scaling, from now on we will consider ` = 1.

Lemma 5.2. The function Φ : (0,+∞) →
(
π
2 , π

)
defined as Φ(m) = γ1,m is of class C∞, strictly

decreasing, and satisfies

lim
m→0+

Φ(m) = π, lim
m→+∞

Φ(m) =
π

2
.

Proof. Let us define the functions f and g as f(γ) = γ tan γ and g(m) = m tanhm. It holds

f ′(γ) = tan γ +
γ

cos2 γ
.

It is clear that f ′(γ) > 0 on
(
π
2 , π

)
, and therefore f admits a reciprocal function f−1 of class C∞.

Observing that Φ(m) = f−1(g(m)), Φ is then of class C∞. Moreover, g′(m) = tanhm + m
cosh2m

> 0 for
every m > 0. Therefore,

Φ′(m) = (f−1)′(g(m)) · g′(m) =
g′(m)

f ′(f−1(g(m))
< 0.

�
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Theorem 5.3. There exists m∗ ∈ (0,+∞) such that λ1,m∗ = minm>0 λ1,m.

Proof. It holds limm→0+ λ1,m = π2 and limm→+∞ λ1,m = +∞. Since the function can be extended to a
continuous function on [0,+∞), there exists m∗ ∈ [0,+∞) such that λ1,m∗ = minm≥0 λ1,m. By direct
computation, it holds γ1,1 ' 2.8833, and hence λ1,1 ' 9.3134 < π2 ' 9.8696. Therefore, m∗ > 0 and the
claim is proved. �

We observe that λ1,m is an eigenvalue if and only if m ∈ N∗. If λ1,m is an eigenvalue for Ω` then, by
scaling, 1

ε2λ1,mε
is an eigenvalue for Ωε`, provided m

ε ∈ N∗. This leads to the following proposition.

Theorem 5.4. Let λ1(Ω`) be the first eigenvalue in Ω` := (0, π)× (−`, `). Then there exists a sequence
`k → 0 such that there exists an eigenfunction associated to λ1(Ω`k) with k nodal domains.

6. Conclusions

The present work is a first step towards a better understanding of the buckling eigenvalue problem
in an annulus, and several open questions deserve to be further investigated. Even though an analytical
proof is still missing, numerical evidence suggests that the number of angular nodal domains of the first
eigenfunction is monotonically increasing with respect to the inner radius, and tends to infinity as the
annulus shrinks to the circumference. The positivity of the radial part of the first eigenfunction also
seems to hold true according to the numerics, but this still remains an open problem.

A general question of deep interest is to determine necessary and sufficient conditions on the domain
Ω for the positivity of the first buckling eigenfunction. Similarly to the case of the clamped plate
eigenvalue problem (1.2), convexity is not sufficient to guarantee positivity, and neither is smoothness of
the boundary. In this paper we give a partial answer to this question, as we show that annuli always
have a sign-changing first eigenfunction, and we studied particularly the case of a shrinking annulus
where the minimal number of nodal domains is even expected to diverge. A natural question which arises
from our investigation is whether there exists a non-simply connected domain with positive first buckling
eigenfunction. Moreover, it is interesting to observe that annuli with sufficiently big inner radius provide
an example of domains with a positive first clamped eigenfunction, but with a sign-changing first buckling
eigenfunction. One might wonder whether the opposite holds true for some other domain; should this be
the case, positivity of clamped and buckling eigenfunctions would then be completely unrelated.

As the annuli Ωa are shrinking towards the circumference, one may expect some type of convergence
for eigenvalues or eigenfunctions to a limiting problem on S1, but this does not seem to be the case
since even the normalized eigenvalues λ(Ωa)|Ωa| diverge. Observing the different eigenbranches, we see
that the eigenfunctions are naturally forced to localize, but we remark that this is not enough to expect
any limiting behavior. It is interesting to note that, as the first eigenvalue keeps on changing branch as
a→ 1−, the number of nodal domains for an associated eigenfunction increases. We expect this quantity
to diverge, and we have numerical evidence for this ansatz (see Table 4), but an analytical proof of this
is still missing. Indeed, if we chop the shrinking annulus into its nodal domains and study them as “close
to rectangles”, the analysis leads towards the same direction. In particular, as the first eigenfunction will
always have at least a diametrical nodal line, if we think the semi-annulus as a rectangle, then Theorem
5.4 proves precisely that the number of nodal domain of the first eigenvalue will diverge. We stress the
fact that the clamped plate problem (1.2) has a totally different behavior, since in that case the first
eigenfunction is simple and does not change sign in the regime a → 1−. This highlights that, while the
two problems present a lot of similarities, they are significantly different and this in particular motivates
the need for further investigations on both problem (1.2) and (1.3).

Finally, the extension of our results to higher dimensional domains still remains open. Multidimen-
sional annuli will be still interesting to study as the eigenfunctions are explicitly written in terms of Bessel
functions and spherical harmonics as we do in Section 2, but now the equation involves ultraspherical
Bessel functions. Moreover, if the dimension is greater than two, then singlets have zero H2-capacity,
which implies the spectral convergence for a → 0+, i.e., when the annulus approaches the ball. In par-
ticular it follows that, in higher dimension, the annulus with an inner radius close to zero must then
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have a simple first eigenvalue. However, the study of the sign of an associated eigenfunction is even more
complicated as it involves the study of higher order ultraspherical Bessel functions.
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