We consider the biharmonic operator subject to homogeneous intermediate boundary conditions of Steklov-type. We prove an analyticity result for the dependence of the eigenvalues upon domain perturbation and compute the appropriate Hadamard-type formulas for the shape derivatives. Finally, we prove that balls are critical domains for the symmetric functions of multiple eigenvalues subject to volume constraint.

Shape deformation for vibrating hinged plates

Davide Buoso;
2014-01-01

Abstract

We consider the biharmonic operator subject to homogeneous intermediate boundary conditions of Steklov-type. We prove an analyticity result for the dependence of the eigenvalues upon domain perturbation and compute the appropriate Hadamard-type formulas for the shape derivatives. Finally, we prove that balls are critical domains for the symmetric functions of multiple eigenvalues subject to volume constraint.
File in questo prodotto:
File Dimensione Formato  
Revised-hinged 10-4-13.pdf

Open Access dal 02/01/2016

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 238.91 kB
Formato Adobe PDF
238.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/109847
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 15
social impact