We consider the biharmonic operator subject to homogeneous intermediate boundary conditions of Steklov-type. We prove an analyticity result for the dependence of the eigenvalues upon domain perturbation and compute the appropriate Hadamard-type formulas for the shape derivatives. Finally, we prove that balls are critical domains for the symmetric functions of multiple eigenvalues subject to volume constraint.
Shape deformation for vibrating hinged plates
Davide Buoso;
2014-01-01
Abstract
We consider the biharmonic operator subject to homogeneous intermediate boundary conditions of Steklov-type. We prove an analyticity result for the dependence of the eigenvalues upon domain perturbation and compute the appropriate Hadamard-type formulas for the shape derivatives. Finally, we prove that balls are critical domains for the symmetric functions of multiple eigenvalues subject to volume constraint.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Revised-hinged 10-4-13.pdf
Open Access dal 02/01/2016
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
238.91 kB
Formato
Adobe PDF
|
238.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.