We consider a classical shape optimization problem for the eigenvalues of elliptic operators with homogeneous boundary conditions on domains in the N-dimensional Euclidean space. We survey recent results concerning the analytic dependence of the elementary symmetric functions of the eigenvalues upon domain perturbation and the role of balls as critical points of such functions subject to volume constraint. Our discussion concerns Dirichlet and buckling-type problems for polyharmonic operators, the Neumann and the intermediate problems for the biharmonic operator, the Lame' and the Reissner-Mindlin systems.

On a classical spectral optimization problem in linear elasticity

Buoso Davide
;
2015-01-01

Abstract

We consider a classical shape optimization problem for the eigenvalues of elliptic operators with homogeneous boundary conditions on domains in the N-dimensional Euclidean space. We survey recent results concerning the analytic dependence of the elementary symmetric functions of the eigenvalues upon domain perturbation and the role of balls as critical points of such functions subject to volume constraint. Our discussion concerns Dirichlet and buckling-type problems for polyharmonic operators, the Neumann and the intermediate problems for the biharmonic operator, the Lame' and the Reissner-Mindlin systems.
2015
978-3-319-17562-1
File in questo prodotto:
File Dimensione Formato  
revised_buoso survey 27_03_14.pdf

file disponibile agli utenti autorizzati

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 274.17 kB
Formato Adobe PDF
274.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/109842
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact