We derive the equation of a free vibrating thin plate whose mass is concentrated at the boundary, namely a Steklov problem for the biharmonic operator. We provide Hadamard-type formulas for the shape derivatives of the corresponding eigenvalues and prove that balls are critical domains under volume constraint. Finally, we prove an isoperimetric inequality for the first positive eigenvalue.

A few shape optimization results for a biharmonic Steklov problem

BUOSO, DAVIDE
;
2015-01-01

Abstract

We derive the equation of a free vibrating thin plate whose mass is concentrated at the boundary, namely a Steklov problem for the biharmonic operator. We provide Hadamard-type formulas for the shape derivatives of the corresponding eigenvalues and prove that balls are critical domains under volume constraint. Finally, we prove an isoperimetric inequality for the first positive eigenvalue.
File in questo prodotto:
File Dimensione Formato  
Buoso_Provenzano_v8.pdf

file ad accesso aperto

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 402.04 kB
Formato Adobe PDF
402.04 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/109833
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 34
social impact