We derive the equation of a free vibrating thin plate whose mass is concentrated at the boundary, namely a Steklov problem for the biharmonic operator. We provide Hadamard-type formulas for the shape derivatives of the corresponding eigenvalues and prove that balls are critical domains under volume constraint. Finally, we prove an isoperimetric inequality for the first positive eigenvalue.
A few shape optimization results for a biharmonic Steklov problem
BUOSO, DAVIDE
;
2015-01-01
Abstract
We derive the equation of a free vibrating thin plate whose mass is concentrated at the boundary, namely a Steklov problem for the biharmonic operator. We provide Hadamard-type formulas for the shape derivatives of the corresponding eigenvalues and prove that balls are critical domains under volume constraint. Finally, we prove an isoperimetric inequality for the first positive eigenvalue.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Buoso_Provenzano_v8.pdf
file ad accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
402.04 kB
Formato
Adobe PDF
|
402.04 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.