In this paper we investigate the structure of a proximinal subspace G of C(Q) of codimension n, in terms of the geometry of the range of the vector measure ν=(ν 1,...,ν n), where (ν 1,...,ν n) is a basis for the annihilator G ⊥. In particular, we prove that if ν is non-atomic, G is proximinal iff for every P∈ExtR(ν) there exists a clopen subset C of ∪ n i=1S(ν i) such that ν(C)=P.

Proximinal subspaces of C(Q) of finite codimension

CENTRONE, Francesca;
1999-01-01

Abstract

In this paper we investigate the structure of a proximinal subspace G of C(Q) of codimension n, in terms of the geometry of the range of the vector measure ν=(ν 1,...,ν n), where (ν 1,...,ν n) is a basis for the annihilator G ⊥. In particular, we prove that if ν is non-atomic, G is proximinal iff for every P∈ExtR(ν) there exists a clopen subset C of ∪ n i=1S(ν i) such that ν(C)=P.
File in questo prodotto:
File Dimensione Formato  
Proximinal1.pdf

file disponibile solo agli amministratori

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 590.32 kB
Formato Adobe PDF
590.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/9226
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact