In this paper we investigate the structure of a proximinal subspace G of C(Q) of codimension n, in terms of the geometry of the range of the vector measure ν=(ν 1,...,ν n), where (ν 1,...,ν n) is a basis for the annihilator G ⊥. In particular, we prove that if ν is non-atomic, G is proximinal iff for every P∈ExtR(ν) there exists a clopen subset C of ∪ n i=1S(ν i) such that ν(C)=P.
Proximinal subspaces of C(Q) of finite codimension
CENTRONE, Francesca;
1999-01-01
Abstract
In this paper we investigate the structure of a proximinal subspace G of C(Q) of codimension n, in terms of the geometry of the range of the vector measure ν=(ν 1,...,ν n), where (ν 1,...,ν n) is a basis for the annihilator G ⊥. In particular, we prove that if ν is non-atomic, G is proximinal iff for every P∈ExtR(ν) there exists a clopen subset C of ∪ n i=1S(ν i) such that ν(C)=P.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Proximinal1.pdf
file disponibile solo agli amministratori
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
590.32 kB
Formato
Adobe PDF
|
590.32 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.