The comparison of 2-D maps is not trivial, the main difficulties being the high complexity of the sample and the large experimental variability characterizing 2-D gel electrophoresis. The comparison of maps from control and treated samples is usually performed by specific software, providing the so-called spot volume dataset where each spot of a specific map is matched to its analogous in other maps, and they are described by their optical density, which is supposed to be related to the underlying protein amount. Here, a different approach is presented, based on the direct comparison of 2-D map images: each map is decomposed in terms of moment functions, successively applying the multivariate tools usually adopted in image analysis problems. The moments calculated are then treated with multivariate classification techniques. Here, two types of moment functions are presented (Legendre and Zernike moments), while linear discriminant analysis and partial least squares discriminant analysis are exploited as classification tools to provide the classification of the samples. The procedure is applied to a sample dataset to prove its effectiveness.
The use of legendre and zernike moment functions for the comparison of 2-D PAGE maps
MARENGO, Emilio;ROBOTTI, Elisa;DEMARTINI, MARCO
2016-01-01
Abstract
The comparison of 2-D maps is not trivial, the main difficulties being the high complexity of the sample and the large experimental variability characterizing 2-D gel electrophoresis. The comparison of maps from control and treated samples is usually performed by specific software, providing the so-called spot volume dataset where each spot of a specific map is matched to its analogous in other maps, and they are described by their optical density, which is supposed to be related to the underlying protein amount. Here, a different approach is presented, based on the direct comparison of 2-D map images: each map is decomposed in terms of moment functions, successively applying the multivariate tools usually adopted in image analysis problems. The moments calculated are then treated with multivariate classification techniques. Here, two types of moment functions are presented (Legendre and Zernike moments), while linear discriminant analysis and partial least squares discriminant analysis are exploited as classification tools to provide the classification of the samples. The procedure is applied to a sample dataset to prove its effectiveness.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.