Acylated ghrelin has been originally described for its potent GH-releasing activity mediated by the activation of the GH secretagogue receptor type 1a. More recently, ghrelin has been reported to exert several other GH-independent biological actions, among which in the modulation of metabolic functions. Glucocorticoids are well known to exert important metabolic functions but also to modulate GH secretion, although through mechanisms that have not been fully clarified so far. Interestingly, the existence of a feedback link between glucocorticoids and ghrelin system has already been reported. The aim of our study was to evaluate the acute GH and ghrelin responses to dexamethasone (DEX) administration in children with idiopathic short stature (ISS) or isolated idiopathic GH deficiency (GHD). Eight children with ISS (age: 9.5+/-1.2 yr) and 7 with GHD (12.1+/-1.4 yr) underwent iv DEX administration (0.3 mg/body surface area at 0 min). IGF-I, GH, and ghrelin levels were assayed at baseline and every 30 min from 120 up to 240 min after DEX. Compared to baseline levels DEX decreased ghrelin in ISS at 120 min and 240 min (p<0.04). On the other hand DEX did not modify ghrelin levels in GHD. After DEX, ghrelin was reduced in ISS compared to GHD (p<0.02). DEX increased GH in ISS but not in GHD (peak: 11.1+/-1.2 vs 7.6+/-0.9 microg/l). Basal, as well as after-DEX ghrelin levels negatively correlated with IGF-I in GHD (p<0.03) and with height SD score (HSDS) in ISS (p<0.02). Acute DEX administration is able to decrease ghrelin in ISS, but not in GHD children. Both basal and after-DEX ghrelin levels negatively correlate with IGF-I and HSDS. All these data suggest the existence of a feedback link among ghrelin, glucocorticoids and the GH/IGF-I axis.
Acute ghrelin response to intravenous dexamethasone administration in idiopathic short stature or isolated idiopathic growth hormone-deficient children.
PRODAM, Flavia;BELLONE, Simonetta;BONA, Gianni
2008-01-01
Abstract
Acylated ghrelin has been originally described for its potent GH-releasing activity mediated by the activation of the GH secretagogue receptor type 1a. More recently, ghrelin has been reported to exert several other GH-independent biological actions, among which in the modulation of metabolic functions. Glucocorticoids are well known to exert important metabolic functions but also to modulate GH secretion, although through mechanisms that have not been fully clarified so far. Interestingly, the existence of a feedback link between glucocorticoids and ghrelin system has already been reported. The aim of our study was to evaluate the acute GH and ghrelin responses to dexamethasone (DEX) administration in children with idiopathic short stature (ISS) or isolated idiopathic GH deficiency (GHD). Eight children with ISS (age: 9.5+/-1.2 yr) and 7 with GHD (12.1+/-1.4 yr) underwent iv DEX administration (0.3 mg/body surface area at 0 min). IGF-I, GH, and ghrelin levels were assayed at baseline and every 30 min from 120 up to 240 min after DEX. Compared to baseline levels DEX decreased ghrelin in ISS at 120 min and 240 min (p<0.04). On the other hand DEX did not modify ghrelin levels in GHD. After DEX, ghrelin was reduced in ISS compared to GHD (p<0.02). DEX increased GH in ISS but not in GHD (peak: 11.1+/-1.2 vs 7.6+/-0.9 microg/l). Basal, as well as after-DEX ghrelin levels negatively correlated with IGF-I in GHD (p<0.03) and with height SD score (HSDS) in ISS (p<0.02). Acute DEX administration is able to decrease ghrelin in ISS, but not in GHD children. Both basal and after-DEX ghrelin levels negatively correlate with IGF-I and HSDS. All these data suggest the existence of a feedback link among ghrelin, glucocorticoids and the GH/IGF-I axis.File | Dimensione | Formato | |
---|---|---|---|
Radetti JEI2008.pdf
file disponibile solo agli amministratori
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
57.67 kB
Formato
Adobe PDF
|
57.67 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.