BACKGROUND: Acylated ghrelin (AG) is a physiological GH secretion amplifier, in part stimulating GHRH neurones and antagonizing somatostatin activity. In humans, AG is one of the most potent pharmacological stimuli of GH secretion and, unlike GHRH, is refractory to the inhibitory effect of glucose, free fatty acids (FFA) and somatostatin. Somatotroph secretion is also profoundly modulated by the adrenergic system. Indeed, beta-adrenergic agonists abolish spontaneous and GHRH-stimulated GH secretion. Based on these data, the aim of the present study was to investigate the effects of beta adrenergic agonism on the GH response to AG. SUBJECTS AND MEASUREMENTS: Six young healthy male volunteers underwent: (a) acute AG intravenous (iv) administration (1.0 microg/kg); (b) salbutamol infusion (SLB; 0.06 microg/kg/min iv); (c) AG + SLB; and (d) saline infusion. In all sessions GH levels were assayed every 15 min from time -30 to +210 min. RESULTS: SLB induced a significant (P < 0.05) inhibition of spontaneous GH secretion that persisted up to 75 min after SLB withdrawal. AG induced a marked increase (P < 0.01) in GH that was not modified by SLB. CONCLUSIONS: The GH-releasing effect of AG is refractory to the inhibitory effect of SLB-induced beta-adrenergic receptor activation. Although further studies are needed to confirm these results during the lifespan and particularly during prolonged exposure to beta agonists, the present data clearly suggest that, among GH stimulatory tests, AG administration might be the most suitable in clinical conditions of chronic treatment with beta-2 agonists, such as in asthmatic disease.

Beta adrenergic agonism does not impair the GH response to acylated ghrelin in man.

PRODAM, Flavia;
2009-01-01

Abstract

BACKGROUND: Acylated ghrelin (AG) is a physiological GH secretion amplifier, in part stimulating GHRH neurones and antagonizing somatostatin activity. In humans, AG is one of the most potent pharmacological stimuli of GH secretion and, unlike GHRH, is refractory to the inhibitory effect of glucose, free fatty acids (FFA) and somatostatin. Somatotroph secretion is also profoundly modulated by the adrenergic system. Indeed, beta-adrenergic agonists abolish spontaneous and GHRH-stimulated GH secretion. Based on these data, the aim of the present study was to investigate the effects of beta adrenergic agonism on the GH response to AG. SUBJECTS AND MEASUREMENTS: Six young healthy male volunteers underwent: (a) acute AG intravenous (iv) administration (1.0 microg/kg); (b) salbutamol infusion (SLB; 0.06 microg/kg/min iv); (c) AG + SLB; and (d) saline infusion. In all sessions GH levels were assayed every 15 min from time -30 to +210 min. RESULTS: SLB induced a significant (P < 0.05) inhibition of spontaneous GH secretion that persisted up to 75 min after SLB withdrawal. AG induced a marked increase (P < 0.01) in GH that was not modified by SLB. CONCLUSIONS: The GH-releasing effect of AG is refractory to the inhibitory effect of SLB-induced beta-adrenergic receptor activation. Although further studies are needed to confirm these results during the lifespan and particularly during prolonged exposure to beta agonists, the present data clearly suggest that, among GH stimulatory tests, AG administration might be the most suitable in clinical conditions of chronic treatment with beta-2 agonists, such as in asthmatic disease.
File in questo prodotto:
File Dimensione Formato  
Benso Clendo09.pdf

file disponibile solo agli amministratori

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 97.6 kB
Formato Adobe PDF
97.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/35845
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact