Background: TSHR is a G-protein-coupled seven transmembrane domain receptor that activates the two major signal transduction pathways: the Gαs/adenylate cyclase and the Gαq/11/phospholipase C pathways. Inactivating mutations in the TSHR gene have been demonstrated to be responsible for subclinical hypothyroidism, a disorder characterized by elevated serum TSH concentrations despite normal thyroid hormones levels. Aim: We identified in a child a nonsense mutation (W520X) in the third transmembrane domain of the TSHR that causes the lack of the C-terminus portion of the receptor. The functional significance of this variation was assessed in vitro. Material/Subject and Methods: The W520X mutation was introduced into the pSVL vector containing the wild-type sequence of TSHR gene. Wild-type and mutated vectors were expressed in CHO cells and cAMP, IP, immunofluorescence and FACS analyses were performed. Results: Transfection with pSVL-TSHR vector induced basal cAMP and IP production in the absence of TSH stimulation, indicating a constitutive activity for the TSHR. An impairment of receptor function was demonstrated by the observation that cells expressing the mutant TSHR exhibited a lower second messenger production with respect to the wild-type, despite a normal expression of the receptor at the cell surface. Conclusions: The mechanism through which the W520X mutation exerts its effect is more likely haploinsufficiency rather than a dominant-negative effect. This could explain the phenotype of our patient, who has a hormonal pattern in the range of a mild subclinical hypothyroidism, without an overt disease phenotype.
The W520X mutation in the TSHR gene brings on subclinical hypothyroidism through an haploinsufficiency mechanism.
MOIA, STEFANIA;WALKER, Gillian Elisabeth;BELLONE, Simonetta;PRODAM, Flavia;GIORDANO, Mara;BONA, Gianni
2013-01-01
Abstract
Background: TSHR is a G-protein-coupled seven transmembrane domain receptor that activates the two major signal transduction pathways: the Gαs/adenylate cyclase and the Gαq/11/phospholipase C pathways. Inactivating mutations in the TSHR gene have been demonstrated to be responsible for subclinical hypothyroidism, a disorder characterized by elevated serum TSH concentrations despite normal thyroid hormones levels. Aim: We identified in a child a nonsense mutation (W520X) in the third transmembrane domain of the TSHR that causes the lack of the C-terminus portion of the receptor. The functional significance of this variation was assessed in vitro. Material/Subject and Methods: The W520X mutation was introduced into the pSVL vector containing the wild-type sequence of TSHR gene. Wild-type and mutated vectors were expressed in CHO cells and cAMP, IP, immunofluorescence and FACS analyses were performed. Results: Transfection with pSVL-TSHR vector induced basal cAMP and IP production in the absence of TSH stimulation, indicating a constitutive activity for the TSHR. An impairment of receptor function was demonstrated by the observation that cells expressing the mutant TSHR exhibited a lower second messenger production with respect to the wild-type, despite a normal expression of the receptor at the cell surface. Conclusions: The mechanism through which the W520X mutation exerts its effect is more likely haploinsufficiency rather than a dominant-negative effect. This could explain the phenotype of our patient, who has a hormonal pattern in the range of a mild subclinical hypothyroidism, without an overt disease phenotype.File | Dimensione | Formato | |
---|---|---|---|
Moia_JEI2013.pdf
file disponibile solo agli amministratori
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
1.59 MB
Formato
Adobe PDF
|
1.59 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.