In this paper we analyze and characterize the saturated fractions of two-factor designs under the simple effect model. Using Linear algebra, we define a criterion to check whether a given fraction is saturated or not. We also compute the number of saturated fractions, providing an alternative proof of the Cayley’s formula. Finally we show how, given a list of saturated fractions, Gini indexes of their margins and the associated state polytopes could be used to classify them.
Two factor saturated designs: Cycles, Gini index and state polytopes
RAPALLO, Fabio;
2014-01-01
Abstract
In this paper we analyze and characterize the saturated fractions of two-factor designs under the simple effect model. Using Linear algebra, we define a criterion to check whether a given fraction is saturated or not. We also compute the number of saturated fractions, providing an alternative proof of the Cayley’s formula. Finally we show how, given a list of saturated fractions, Gini indexes of their margins and the associated state polytopes could be used to classify them.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
15598608%2E2014%2E840518.pdf
file disponibile agli utenti autorizzati
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
457.08 kB
Formato
Adobe PDF
|
457.08 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.