For a semilinear biharmonic Dirichlet problem in the ball with supercritical power-type nonlinearity, we study existence/nonexistence, regularity and stability of radial positive minimal solutions. Moreover, qualitative properties, and in particular the precise asymptotic behaviour near x = 0 for (possibly existing) singular radial solutions, are deduced. Dynamical systems arguments and a suitable Lyapunov (energy) function are employed.
The Dirichlet problem for supercritical biharmonic equations with power-type nonlinearity
FERRERO, ALBERTO;
2007-01-01
Abstract
For a semilinear biharmonic Dirichlet problem in the ball with supercritical power-type nonlinearity, we study existence/nonexistence, regularity and stability of radial positive minimal solutions. Moreover, qualitative properties, and in particular the precise asymptotic behaviour near x = 0 for (possibly existing) singular radial solutions, are deduced. Dynamical systems arguments and a suitable Lyapunov (energy) function are employed.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
FerreroGrunauRev.pdf
file disponibile solo agli amministratori
Descrizione: Articolo principale
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
208 kB
Formato
Adobe PDF
|
208 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.