For a semilinear biharmonic Dirichlet problem in the ball with supercritical power-type nonlinearity, we study existence/nonexistence, regularity and stability of radial positive minimal solutions. Moreover, qualitative properties, and in particular the precise asymptotic behaviour near x = 0 for (possibly existing) singular radial solutions, are deduced. Dynamical systems arguments and a suitable Lyapunov (energy) function are employed.

The Dirichlet problem for supercritical biharmonic equations with power-type nonlinearity

FERRERO, ALBERTO;
2007-01-01

Abstract

For a semilinear biharmonic Dirichlet problem in the ball with supercritical power-type nonlinearity, we study existence/nonexistence, regularity and stability of radial positive minimal solutions. Moreover, qualitative properties, and in particular the precise asymptotic behaviour near x = 0 for (possibly existing) singular radial solutions, are deduced. Dynamical systems arguments and a suitable Lyapunov (energy) function are employed.
File in questo prodotto:
File Dimensione Formato  
FerreroGrunauRev.pdf

file disponibile solo agli amministratori

Descrizione: Articolo principale
Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 208 kB
Formato Adobe PDF
208 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/25121
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 29
social impact