We prove some results about the first Steklov eigenvalue d_1 of the biharmonic operator in bounded domains. Firstly, we show that Fichera's principle of duality (Fichera in Atti Accad Naz Lincei 19:411-418, 1955) may be extended to a wide class of nonsmooth domains. Next, we study the optimization of d_1 for varying domains: we disprove a long-standing conjecture, we show some new and unexpected features and we suggest some challenging problems. Finally, we prove several properties of the ball

On the first eigenvalue of a fourth order Steklov problem

FERRERO, ALBERTO;
2009-01-01

Abstract

We prove some results about the first Steklov eigenvalue d_1 of the biharmonic operator in bounded domains. Firstly, we show that Fichera's principle of duality (Fichera in Atti Accad Naz Lincei 19:411-418, 1955) may be extended to a wide class of nonsmooth domains. Next, we study the optimization of d_1 for varying domains: we disprove a long-standing conjecture, we show some new and unexpected features and we suggest some challenging problems. Finally, we prove several properties of the ball
File in questo prodotto:
File Dimensione Formato  
Bucur-Ferrero-Gazzola.pdf

file disponibile solo agli amministratori

Descrizione: Articolo principale
Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 381.89 kB
Formato Adobe PDF
381.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/23395
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 35
social impact