We study existence and nonexistence of least energy solutions of a quasilinear critical growth equation with degenerate m-Laplace operator in a bounded domain in R^n with n > m > 1. Existence and nonexistence of solutions of this problem depend on a lower order perturbation and on the space dimension n. Our proofs are obtained with critical point theory and the lack of compactness, due to critical growth condition, is overcome by constructing minimax levels in a suitable compactness range.

Least energy solutions for critical growth equations with a lower order perturbation

FERRERO, ALBERTO
2006-01-01

Abstract

We study existence and nonexistence of least energy solutions of a quasilinear critical growth equation with degenerate m-Laplace operator in a bounded domain in R^n with n > m > 1. Existence and nonexistence of solutions of this problem depend on a lower order perturbation and on the space dimension n. Our proofs are obtained with critical point theory and the lack of compactness, due to critical growth condition, is overcome by constructing minimax levels in a suitable compactness range.
File in questo prodotto:
File Dimensione Formato  
Ferrero-NManifold.pdf

file disponibile solo agli amministratori

Descrizione: Articolo principale
Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 333.05 kB
Formato Adobe PDF
333.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/20299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact