The activation of MgCl2 is an essential step for preparing performant Ziegler-Natta catalysts (ZNCs), but the structural characterization of the so formed δ-MgCl2 has been left behind due to its complicated disorder. In the current study, synchrotron X-ray total scattering is applied for the structure analysis of δ-MgCl2. Complementary use of powder X-ray diffraction (PXRD) and pair distribution function (PDF) enabled determining the type and extent of disorder for a series of mechanically and chemically activated δ-MgCl2 samples. Moreover, their combination with molecular simulation successfully derived consistent nanoparticle models, where the conventional interpretation of disorderedly stacked nanoplates was justified in a cross-validated manner.
Revisiting the identity of δ-MgCl2: Part I. Structural disorder studied by synchrotron X-ray total scattering
D'Amore M.Formal Analysis
;
2020-01-01
Abstract
The activation of MgCl2 is an essential step for preparing performant Ziegler-Natta catalysts (ZNCs), but the structural characterization of the so formed δ-MgCl2 has been left behind due to its complicated disorder. In the current study, synchrotron X-ray total scattering is applied for the structure analysis of δ-MgCl2. Complementary use of powder X-ray diffraction (PXRD) and pair distribution function (PDF) enabled determining the type and extent of disorder for a series of mechanically and chemically activated δ-MgCl2 samples. Moreover, their combination with molecular simulation successfully derived consistent nanoparticle models, where the conventional interpretation of disorderedly stacked nanoplates was justified in a cross-validated manner.File | Dimensione | Formato | |
---|---|---|---|
Wada_JCatal_2020.pdf
file disponibile solo agli amministratori
Licenza:
DRM non definito
Dimensione
3.59 MB
Formato
Adobe PDF
|
3.59 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.