We consider polynomial transforms (polyspectra) of Berry's model - the Euclidean Random Wave model - and of Random Hyperspherical Harmonics. We determine the asymptotic behavior of variance for polyspectra of any order in the high-frequency limit. In particular, we are able to treat polyspectra of any odd order q >= 5, whose asymptotic behavior was left as a conjecture in the case of Random Hyperspherical Harmonics by Marinucci and Wigman (Comm. Math. Phys. 2014). To this end, we exploit a relation between the variance of polyspectra and the distribution of uniform random walks on Euclidean space with finitely many steps, which allows us to rely on technical results in the latter context.

Fluctuations of polyspectra in spherical and Euclidean random wave models

Todino A. P.
2024-01-01

Abstract

We consider polynomial transforms (polyspectra) of Berry's model - the Euclidean Random Wave model - and of Random Hyperspherical Harmonics. We determine the asymptotic behavior of variance for polyspectra of any order in the high-frequency limit. In particular, we are able to treat polyspectra of any odd order q >= 5, whose asymptotic behavior was left as a conjecture in the case of Random Hyperspherical Harmonics by Marinucci and Wigman (Comm. Math. Phys. 2014). To this end, we exploit a relation between the variance of polyspectra and the distribution of uniform random walks on Euclidean space with finitely many steps, which allows us to rely on technical results in the latter context.
File in questo prodotto:
File Dimensione Formato  
GMT.pdf

file ad accesso aperto

Descrizione: articolo su rivista
Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 216.41 kB
Formato Adobe PDF
216.41 kB Adobe PDF Visualizza/Apri
24-ECP578.pdf

file disponibile agli utenti autorizzati

Descrizione: articolo su rivista
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 286.88 kB
Formato Adobe PDF
286.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/178162
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact