We study existence and boundedness of solutions for the quasilinear elliptic equation −Δ_m u = λ(1+u)^p in a bounded domain Ω with homogeneous Dirichlet boundary conditions. The assumptions on both the parameters λ and p are fundamental. Strange critical exponents appear when boundedness of solutions is concerned. In our proofs we use techniques from calculus of variations, from critical-point theory, and from the theory of ordinary differential equations.

On the solutions of quasilinear elliptic equations with a polynomial-type reaction term

FERRERO, ALBERTO
2004-01-01

Abstract

We study existence and boundedness of solutions for the quasilinear elliptic equation −Δ_m u = λ(1+u)^p in a bounded domain Ω with homogeneous Dirichlet boundary conditions. The assumptions on both the parameters λ and p are fundamental. Strange critical exponents appear when boundedness of solutions is concerned. In our proofs we use techniques from calculus of variations, from critical-point theory, and from the theory of ordinary differential equations.
File in questo prodotto:
File Dimensione Formato  
Ferrero-Quasilinear.pdf

file disponibile solo agli amministratori

Descrizione: Articolo principale
Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 427.19 kB
Formato Adobe PDF
427.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/17181
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact