We consider noncommutative principal bundles which are equivariant under a triangular Hopf algebra. We present explicit examples of infinite dimensional braided Lie and Hopf algebras of infinitesimal gauge transformations of bundles on noncommutative spheres. The braiding of these algebras is implemented by the triangular structure of the symmetry Hopf algebra. We present a systematic analysis of compatible *-structures, encompassing the quasitriangular case.
Braided Hopf Algebras and Gauge Transformations II: $$*$$-Structures and Examples
Paolo Aschieri
;Chiara Pagani
2023-01-01
Abstract
We consider noncommutative principal bundles which are equivariant under a triangular Hopf algebra. We present explicit examples of infinite dimensional braided Lie and Hopf algebras of infinitesimal gauge transformations of bundles on noncommutative spheres. The braiding of these algebras is implemented by the triangular structure of the symmetry Hopf algebra. We present a systematic analysis of compatible *-structures, encompassing the quasitriangular case.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
74 Braided gauge *-struct.pdf
file ad accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
706.98 kB
Formato
Adobe PDF
|
706.98 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.