We consider noncommutative principal bundles which are equivariant under a triangular Hopf algebra. We present explicit examples of infinite dimensional braided Lie and Hopf algebras of infinitesimal gauge transformations of bundles on noncommutative spheres. The braiding of these algebras is implemented by the triangular structure of the symmetry Hopf algebra. We present a systematic analysis of compatible *-structures, encompassing the quasitriangular case.

Braided Hopf Algebras and Gauge Transformations II: $$*$$-Structures and Examples

Paolo Aschieri
;
Chiara Pagani
2023-01-01

Abstract

We consider noncommutative principal bundles which are equivariant under a triangular Hopf algebra. We present explicit examples of infinite dimensional braided Lie and Hopf algebras of infinitesimal gauge transformations of bundles on noncommutative spheres. The braiding of these algebras is implemented by the triangular structure of the symmetry Hopf algebra. We present a systematic analysis of compatible *-structures, encompassing the quasitriangular case.
File in questo prodotto:
File Dimensione Formato  
74 Braided gauge *-struct.pdf

file ad accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 706.98 kB
Formato Adobe PDF
706.98 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/169882
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact