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Abstract

We consider noncommutative principal bundles which are equivariant under a triangu-
lar Hopf algebra. We present explicit examples of infinite dimensional braided Lie and
Hopf algebras of infinitesimal gauge transformations of bundles on noncommutative
spheres. The braiding of these algebras is implemented by the triangular structure of the
symmetry Hopf algebra. We present a systematic analysis of compatible x-structures,
encompassing the quasitriangular case.
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1 Introduction

The gauge group of a principal bundle can be given as bundle automorphisms (dif-
feomorphisms of the total space onto itself which respect the group action) covering
the identity map on the base space. Elements of the gauge group act by pullback on
the space of connection one-forms on the bundle, thus playing a central role for the
definition of the moduli space of connections. In the dual algebraic language a princi-
pal bundle is given as an algebra extension B € A which is H-Hopf-Galois, for H a
Hopf algebra. A gauge transformation would then be given as an H-equivariant alge-
bra morphism of A onto itself which restricts to the identity on B. This dual definition
works well for the case of commutative algebras, and also for Hopf—Galois extensions
with H coquasitriangular and B commutative [4]. It is however too restrictive in gen-
eral, due to the scarcity of morphisms for a generic noncommutative algebra. Finding a
good notion of bundle automorphisms and gauge transformations for noncommutative
principal bundles is still an open problem.

@ Springer



Braided Hopf algebras and gauge transformations... Page3of49 13

In our previous paper [5] we looked at the problem from the infinitesimal view-point
by considering algebra derivations, rather than algebra morphisms. We considered
derivations of algebras which are commutative up to a braiding. The derivations are
required to form a braided Lie algebra as well as a module over the algebra. Compati-
bility of these two structures is better understood in the context of triangular braidings.

We then studied the case of H-Hopf—Galois extensions which are equivariant under
a triangular Hopf algebra (K, R). Infinitesimal gauge transformations are now given
by H-comodule maps that are vertical braided derivations, with the brading imple-
mented by the triangular structure R of the symmetry K. These maps form a braided
Lie algebra autRB (A) and lead to a braided Hopf algebra U/ (autRB (A)) of infinitesimal
gauge transformations. The construction is shown to be compatible with the theory of
Drinfeld twists, and thus suitable for the study of noncommutative principal bundles
that are obtained via twist deformation (quantization) of classical ones. We refer to
[5] for details and for a discussion of different approaches and of the literature on the
subject.

In the present paper we complement the general theory developed in [5], and briefly
reviewed in § 2, with a systematic analysis of x-structures on braided Hopf algebras
associated with quasitriangular Hopf algebras. This is done in §3 where we also study
their compatibility with actions on x-algebras. In the triangular case we further consider
braided Lie x-algebras and their representations on x-algebras.

We then illustrate the general theory with the computation of the braided Lie
x-algebras of infinitesimal gauge transformations of two important examples of non-
commutative principal bundles. These are given by two Hopf—Galois extensions of the
algebra (’)(Sg) of the noncommutative 4-sphere Sg of [8] associated to an abelian twist.
Additional examples obtained from cotriangular quantum groups, and from abelian
as well as Jordanian twists are in [5, §7.1, §8.1]. In §4.1 we determine the braided Lie
x-algebra aut Sg)(O(Sg )) of infinitesimal gauge transformations of the O(SU (2))-

Hopf-Galois extension O(Sg ) C O(Sg ) of [12]. This bundle can also be obtained as a
deformation by a twist on O(T?) of the Hopf-Galois extension O(S*) c O(S7) of the
classical SU (2)-Hopf bundle [3]. This allows for the construction of aut s (0(597 )
from its classical counterpart, following the general theory. The explicit description
of the classical gauge Lie *x-algebra auto(s4)(O(S7)) relies on the Spin(5) equiv-
ariance of the principal bundle 7 — S*. This equivariance also implies that, as
linear space, autp g4 ((9(87)) splits as a direct sum over a class of representations of
the Lie *x-algebra so(5), of vertical O(SU (2))-equivariant derivations, this is done in
§ 4.1.4. Following a similar procedure, in § 4.2 we compute the braided Lie x-algebra
of infinitesimal gauge transformations of the O(S Oy (4, R))-Hopf-Galois extension
O(Sg) C O(S0¢(5, R)) of the quantum homogeneous space O(Sg) [3, 14].

The braided Lie algebras of gauge transformations of these Hopf—Galois extensions
of O(Sg) are re-obtained in [6] via an intrinsic construction, which does not use the
twist procedure. They are further studied there in the context of Atiyah sequences of
braided Lie algebras, generalising the Atiyah sequence of a principal bundle.
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2 Braided Lie algebras of gauge transformations

The main objects investigated in this paper are K-equivariant Hopf—-Galois exten-
sions, for (K, R) a triangular Hopf algebra, and their braided Lie algebras of gauge
symmetries. We briefly recall from [5] the main notions and results that are needed.

We work in the category of k-modules for k a commutative field, or the ring of
formal power series in an indeterminate and coefficients in a field. All algebras are
assumed to be unital and associative; morphisms of algebras preserve the unit. Dually
for coalgebras. We use standard terminologies and notations in Hopf algebra theory.
For H a bialgebra we also call H-equivariant a map of H-modules or H-comodules.

Recall that an algebra A is a right H-comodule algebra for a Hopf algebra H if it
carries aright coaction § : A — A ® H which is a morphism of algebras. As usual we
write §(a) = a ) ® a;, in Sweedler notation with an implicit sum. Then the subspace
of coinvariants B := A = {b € A|§(b) = b ® 1y} is a subalgebra of A. The
algebra extension B C A is called an H-Hopf—Galois extension if the canonical map

X =(m®id)o({d®pd):AQsA— AQH, dQpar—dap®aqu
2.1)

is bijective. There may be additional requirements, such as faithful flatness of A as a
right B-module, to be mentioned when needed.

In the present paper we deal with H-Hopf-Galois extensions which are K-
equivariant for a Hopf algebra K. That is A carries also a leftaction>: K ® A — A
that commutes with the right H-coaction, § o >= (> ®id) o (id ® 8) (the coaction §
is a K-module map where H has trivial K-action). On elements k € K, a € A,

(k> a)g ® k>a)g = k>ag ag, . (2.2)
We further assume the Hopf algebra K to be quasitriangular. Recall that a bialgebra
(or Hopf algebra) K is quasitriangular if there exists an invertible elementR € K ® K

(the universal R-matrix of K) with respect to which the coproduct A of K is quasi-
cocommutative

AP (k) = RA(K)R (2.3)

fo_r eac_h k € K, with AP := 1t o A, t the flip map, andR € K ® K the inverse of R,
RR = RR =1 ® 1. Moreover R is required to satisfy,

(A®id)R=Rj3Ry3 and (id ® A)R = R;3Rs. 2.4)
We write R := R* ® R, with an implicit sum. Then Rj» = R* ® R, ® 1, and similarly
for Ry3 and Ry3. From conditions (2.3) and (2.4) it follows that R satisfies the quantum

Yang—Baxter equation Ri2R13R23 = R23R13R12. The R-matrix of a quasitriangular
bialgebra (K, R) is unital: (¢ ® id)R = 1 = (id ® ¢)R, with ¢ the counit of K. When
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K is a Hopf algebra, quasitriangularity implies that its antipode S is invertible and
satisfies

(S®iD(R) =R; (d®SHR) =R; (S®HR) =R. 2.5

The Hopf algebra K is said to be triangular whenR = Ry1, withRy; = 7(R) = R, ®R“.

2.1 Braided Hopf algebras

We recall that a braided bialgebra associated with a quasitriangular Hopf algebra
(K,R) is a K-module (L, >>1) which is both a K-module algebra (L, my, ng,>r)
and a K-module coalgebra (L, A, €1, I>1) and is a bialgebra in the braided monoidal
category of K-modules. Thatis, ey : L — kand Ay : L — L X L are algebra maps
with respect to the product in L and the product = in L ® L defined by

@@y’ ®Y) =xVR(G"® )y =x(Ry >Lx) @ R* >L Y)Yy (2.6)
forx, y,x’,y € L and
Yp:L®L—-LQL, Yr(x ® y) =Ry > yQRY >y x 2.7)
the braiding. We denote L X L = (L ® L, »). Itis a K-module algebra with action

k >z (x Xy) = (kgy > x) X (ko) >1 y). (2.8)

Such an L is a braided Hopf algebra if there is a K-module map Sy : L — L, the
braided antipode, which satisfies

mypo(id, ® Sp)oAp =npoer =mypo (S ®idp)o Ay . 2.9)
It turns out that Sy, is a braided algebra map:
SL(xy) = (R > SL(Y)(RY >1 SL(x)) (2.10)
and a braided coalgebra map:

Az o Sp(x) = SL(Ry > x0) K SL(R* > x(1)

(For Wr = t the flip map, the previous conditions state that Sy is an antialgebra and
anticoalgebra map.)

Due to the quasi-cocommutativity property (2.3), the action in (2.8) commutes with
the braiding: > ;g7 o Wgr = WYRo > &y . More generally, given two K -modules V, W
and braiding Wg : VW — WV, Vg(v®w) = Ry >w w®R* >y v, the actions
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13 Page 60f49 P. Aschieri et al.

of the coalgebra K on their tensor products satisfy k >wgy oWr = Wro k Dygw
fork € K.

2.2 Braided Lie algebras of derivations

We study derivations of quasi-commutative algebras. As mentioned in the introduction,
compatibility of the braided Lie algebra and the module structures works well in the
context of triangular braidings.

Here we take (K, R) to be triangular, an assumption which is enough for the purposes
of the present paper. A braided Lie algebra associated with a triangular Hopf algebra
(K, R), or simply a K-braided Lie algebra, is a K-module g with a bilinear map

[.]1:9®g—9

that satisfies the following conditions:

(i) K-equivariance: for A(k) = k) ® k() the coproduct of K,

k> [u,v] = [kq) > u, kg > vl
(ii) braided antisymmetry:
[, v] = —[Ry > v, R¥ > u],
(iii) braided Jacobi identity:
[u, [v, w]] = [[u, v], w] + [Ry > v, [R* > u, w]],

forall u,v,w e g,k € K.

As shown in [5, §5.1], the universal enveloping algebra U/ (g) of a braided Lie
algebra g associated with (K, R) is a braided Hopf algebra. The coproduct of ¢/ (g) is
determined requiring the elements of g to be primitive, A(u) = u X 1 4+ 1 X u, for all
ueg.

Any K-module algebra A is a K-braided Lie algebra with bracket given by the
braided commutator

[,L]:AQRA— A, a®br+ [a,bl=ab— Ry >b)R*>0a). (2.12)

(See [5, Lemma5.2].) In particular, if A is a K-module algebra, then also the K -module
algebra (Hom(A, A), I>Hom(a,4)) of linear maps from A to A with action

D>Hom(4,4): K ® Hom(A, A) — Hom(A, A)

k® ¥ = k DHoma,a) ¥ @ A kg Da Y (Ske) > A)
(2.13)
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is a braided Lie algebra with the braided commutator; here S is the antipode of K.
Elements ¢ in Hom(A, A) which satisfy

Y(ad') = y(a)a’ + Ry > @) (R" >Hom(a,a) ¥)(a") (2.14)
for any a, a’ in A are called braided derivations. We denote DerR(A) the k-module
of braided derivations of A (to lighten notation we often drop the subscript R). It is a

K-submodule of Hom(A, A), with action given by the restriction of >Hom(4, A)

>per(a): K ® Der(A) — Der(A)
k ® 1// [ k I>DCI‘(A) I/f ad— k(l) > '(//(S(k(z)) > a) (215)

and moreover, see [5, Prop. 5.7], a braided Lie subalgebra of Hom(A, A) with

[, ]:Der(A) ® Der(A) — Der(A)
V@A [V, Al := v oX — (Ry D>per(a) ) © (R Bperca) ¥). (2.16)

When the K-module algebra A is quasi-commutative, that is when
aa =Ry >ad)RY>a), (2.17)
forall a,a’ € A, the braided Lie algebra Der(A) with
(@y)(a) =ay(a), (2.18)

for v € Hom(A, A), a,a’ € A, is also a left A-submodule of Hom(A, A). The Lie
bracket of Der(A) satisfies ( [5, Prop. 5.8])

[ay.a'y'] = ay @)V +aRa > a")[R* >per(a) ¥, ¥']
—RgRy > @' (RsRy >per(a) ¥') (R°R? > @) RYR* Bper(a)y ¥
(2.19)

foralla,a’ € A, ¥, ' € Der(A).

2.3 Infinitesimal gauge transformations

Let now B = A“°H C A be a K-equivariant Hopf-Galois extension, for (K, R)
a triangular Hopf algebra. Inside the braided Lie algebra Der(A) we consider the
subspace of braided derivations that are H-comodule maps,

Der’y ,;(A) = {u € Der(A) | 8(u(a)) = u(ae) ® aq,, a € A} (2.20)
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and then those derivations that are vertical,
aut (A) := {u € Derf ;; (A) | u(b) =0, b e B}. 2.21)

The linear spaces Der?vl y (A) and autRB (A) are K -braided Lie subalgebras of Der(A),

[5, Prop. 7.2]. Elements of aut% (A) areregarded as infinitesimal gauge transformations
of the K-equivariant Hopf—Galois extension B = Al C A, [5, Def. 7.1]. There is
the corresponding braided Hopf algebra U/ (aut% (A)) of gauge transformations.

2.4 Twisting of braided Lie algebras

Important examples of noncommutative principal bundles come from twisting clas-
sical structures. Aiming at studying their braided Lie algebras of infinitesimal gauge
transformations, we need to first consider twist deformations of braided Lie algebras.

We recall some basic results of the theory of Drinfeld twists [9].

Let K be a bialgebra (or Hopf algebra). A twist for K is an invertible element
F € K ® K which is unital, (¢ ® id)(F) = 1 = (id ® ¢)(F), and satisfies the twist
condition

F®DI(A®Iid)(F)]=1®FH[Id® A)(F)]. (2.22)
For F and its inverse F we write F = F* ® Fy, and F =: Fe Fy, with an implicit sum.

The R-matrix R of a quasitriangular bialgebra K is a twist for K.

When K has a twist it can be endowed with a second bialgebra structure which
is obtained by deforming its coproduct and leaving its counit and multiplication
unchanged. Moreover if K is triangular, or more in general quasitriangular, so is
the new bialgebra:

Proposition 2.1 Let F = F* ® Fy, be a twist on a bialgebra (K, m, n, A, €). Then the
algebra (K, m, n) with coproduct

Ar(k) := FA(K)F = F“k(l)?ﬂ ®FokoFg, kek (2.23)
and counit € is a bialgebra. If in addition K is a Hopf algebra, then the twisted

bialgebra K¢ := (K, m, n, Af, ¢) isa Hopfalgebra with antipode SF_(k) := UpS(k)Uf,
where U is the invertible element ug := F*S(F,) with Uf = S(?Q)Fa its inverse.

Finally, if (K, R) is a quasitriangular bialgebra (a Hopf algebra), such is the twisted
bialgebra (Hopf algebra) Kg with R-matrix

Rr := F21 RF = FoRPF” @ F*R4F, (2.24)

and inverse ﬁp = Fﬁ?zl = F“ﬁﬁﬁy ® Faﬁﬂﬁy. If (K, R) is triangular, so is (Kr, Rg):
Rr21 = FR21 F21 = FRF21 =Rp.
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Any K-module V with left action >y: K ® V. — V, is also a Kr-module with
the same linear map >y, now thought as a map >y: K ® V — V. When thinking
of V as a Kr-module we denote it by Vg, with action [>y;. Moreover, any K-module
morphism ¥ : V. — W can be thought of as a morphism ¢ : Vi — WE.

If A is a K-module algebra, with multiplication m 4 and unit n4, in order for the
action >4, to be an algebra map one has to endow the Kr-module Ar with a new
algebra structure: the unit is unchanged, while the product is deformed to

ma; : AF ®F AF — Ar, a®rd +—> aed = (F* >aa)(Fy >ad).
(2.25)

For any K-module algebra map ¢ : A — A’, the Kp-module map v : A — Ap is
an algebra map for the deformed products.

If C is a K-module coalgebra, the Kr-module Cf is a Kp-module coalgebra with
counit e = ¢ as linear map and coproduct

AfF:Cr— CE®r Cr, ¢t Ap(c) =F* > ¢y ®F Fy > ¢ - (2.26)

The twist L of a braided Hopf algebra L is obtained twisting L as a K-module algebra
and as a K-module coalgebra, cf. [5, Prop. 4.11].

We next recall that the action of a braided Hopf algebra (or just bialgebra) L on a
K-module algebra A is a K-equivariant action »4: L ® A — A which satisfies

x W4 (ad) = (xg »a Ry >4 @) (R L xp) Bad’), (2.27)

for all @, a’ € A. When twisting this leads to an action
ba LEQFAF —> Ap, xpaa=F orx)wa Fa>aa). (228)
When g is a braided Lie algebra associated with a triangular Hopf algebra (K, R), and

F is a twist for K, the Kr-module gf inherits from g a twisted bracket ([5, Prop. 5.14]):

Proposition 2.2 The Kg-module gg with bilinear map

[LIF=0r®gr = 0, UV — [u,vlf:=[F Dgu,Fe>gv]  (229)

is a braided Lie algebra associated with (K, Rf).

As a particular case of the above, consider the braided Lie algebra (Der(A), [, ]),
for A a K-module algebra. It consists of the K-module of braided derivations of A to
itself, with action I>Hom(a, 4) as in (2.15), and bracket the braided commutator (2.16).

It is a braided Lie algebra associated with the triangular Hopf algebra (K, R).
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13 Page 10 0f 49 P. Aschieri et al.

On the one hand, we obtain the braided Lie algebra (Der(A)g), [, ]r) associated
with the triangular Hopf algebra (Kf, Re). The Kp-action I>pera), coincides with
>Der(4) as linear map. The Lie bracket is given by the braided commutator

[V, AlF = ¥ oF A — (Rfg D>Der(a) A) oF (RE” D>per(a) ¥)
with the composition (in fact in (Hom(A, A), o)) that is changed as in (2.25):

Yo ¢ = (F* >per(ay ¥) o (Fo B>Der(a) ¢) - (2.30)

On the other hand, there is the braided Lie algebra Der(Af) of the Kr-module Af
associated with (KF, Rr). We use the notation Ag(k) =: kjj; ® kpp for the coproduct
in KF to distinguish it from the original one A (k) = k¢, ® k;) in K. The Kf-action is

>Der(Ap): Kr ® Der(Ar) — Der(Af)

k® Y = k Dperap) ¥ 1 a > hyy Dag Y(SE(hp) >a a).
2.31)

with bracket
[¥, Ag: = ¥ o A — (Rrg DDercap) ) © (RE® BDerap) V) -
These two braided Lie algebras are isomorphic [5, Thm. 5.19]:

Theorem 2.3 The braided Lie algebras (Der(A)g, [, Ir) and (Der(Af), [, 1) are
isomorphic via the map

D:Der(A)f — Der(Ag), ¢+ D) :ars (F Bper(a) ¥)(Fo >4 a)
(2.32)

which satisfies D([I//, A]F) = [DW), DAV)]R;, for all yr, & € Der(A)g. It has inverse

D! :Der(Af) — Der(A)e, ¥+ D (W) :a > (F >per(ap) V) (Fa D ag a) .
(2.33)

This isomorphism extends as algebra map to the universal enveloping algebras
D :UDer(A)g) — U(Der(Af))
resulting into a braided Hopf algebra isomorphism. We further have the braided
Hopf algebras isomorphisms (see [S5, Prop. 5.18]) U (Der(A))r =~ UDer(A)g) =~
U (Der(Af)).

Remark 2.4 As shown in [5], the isomorphism D : Der(A)f — Der(Ag) is
the restriction of a more general isomorphism D : ((Hom(A, A)g, o), [, Ir) —
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((Hom(AF, Af), o), [, Ige). This result indeed holds in more generality for A just a
K-module and not necessarily a K-module algebra.

As mentioned, when A is quasi-commutative the K-braided Lie algebra Der(A)
has an A-module structure defined in (2.18) that is compatible with the Lie bracket of
Der(A).

The Kg-braided Lie algebra Der(A)g has Ap-module structure

a-yi=F >aa) (e >peray V), (2.34)

for all ¥ € Der(A)r and a € Af. The compatibility of the braided bracket with this
module structure then, for all ¥, ¥ € Der(A)g, a, a’ € Af, reads

lary,a ¢y r=a-rly.alrrv' +a+r Rrqg >ap @) F [RE* Bperay ¥, ¥'IF
— RrgRrg Ba; @ F [REsRE, Bpercay ¥ REPRE? a; alr - RFVRE” Dpercar ¥ -
(2.35)

Here an element in A is thought as a linear map A — A given by left multiplication.
— € °r, =
Then [, alf = [F >pera) ¥, Fo >4 al = (F Bper(a) ¥)(Fa >4 a).

Also the Kg-braided Lie algebra Der(Af) has compatible Ap-module structure.
With the product e in (2.25) this is given as in (2.18) by

(@e)(a) =aey(a) (2.36)

for any a, a’ € A, ¥ € Der(Ag).

The isomorphism D : Der(A)g — Der(Af) respects the Ap-module structures:

Corollary 2.5 Ifthe K-module algebra A is quasi-commutative, the braided Lie alge-
bra isomorphism D : (Der(A)g, [, 1) — (Der(Ap), [, Ir;) of Theorem 2.3 is also
an isomorphism of the Ap-modules Der(A)g and Der(Af):

D(a ¢ ¥) = aw D),
fora € Ar and € Der(A)g.

Next, let B € A be a K-equivariant Hopf—Galois extension. We use the above
isomorphisms for the K-braided Lie algebra of derivations Der(A) and its braided
subalgebras Der?\/l u(A) and autRB (A) defined in (2.20) and in (2.21).

The K -braided Lie algebras (aut'}; (A),[, ] C (Der?vl y(A), [, ]) are twisted to

the Kr-braided Lie algebras (aut% (Ae, [, 10 € (Dersth (A)g, [, Ir) with bracket
[, Ir. These are braided Lie subalgebras of (Der(A)g, [, Ir). We can equivalently

consider the Kg-braided Lie algebras (autRBFF(AF), [, Ir) € (Deri; He (Af), [, Ire)
that are braided Lie subalgebras of (Der(Af), [, Ir;). These are isomorphic, [5, Prop.
8.1]:
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13 Page 12 0f 49 P. Aschieri et al.

Proposition 2.6 The isomorphism D : (Der(A)g, [ , Ir) — (Der(Af), [ , Ire) of
bralded Lie algebras in Theorem 2.3 restricts to isomorphisms D : Der (A)F —

Der MHF (Ap) and D : aut® (A — autB (Af) of (K, Rp)-braided Lie algebras

In § 4 we work out the braided Lie algebra of equivariant derivations and of infinites-
imal gauge transformations for two important examples of principal bundles over the
noncommutative 4-sphere Sg of [8]. We use the general theory developed in this section
to obtain the braided Lie algebra of equivariant derivations and of infinitesimal gauge
transformations of these noncommutative bundles from their classical counterparts.

These noncommutative principal bundles are x-algebra extensions (which can be
completed to C*-algebras). The x-structures canonically lift to the Lie algebras of
braided derivations and of gauge transformations. Before considering these examples,
in the next section we proceed with a systematic analysis of *-structures for braided
Hopf and Lie algebras. The results of § 4 are however presented in a self contained
way so that § 3 might be skipped in a first reading.

3 Braided Hopf and Lie #-algebras

In this section the ground field is k = C. We present a study of compatibility conditions
for defining *-structures on Hopf algebras and their representations. The study of
braided Hopf *-algebra actions on braided *-algebras associated with quasitriangular
Hopf algebras is new to the best of our knowledge.

A x-structure on a vector space V is an antilinear involution * : V. — V, v > v*,
on an algebra A one also requires % : A — A to be antimultiplicative. A x-structure
on a Hopf algebra K is a *-structure on the algebra K that satisfies A (k*) = A(k)*®*
forall k € K; it then follows that &(k*) = e(k) and (S o %)2 = id. In particular S is
invertible, with §7' = % o § o %. If V is a K-module with a *-structure, one requires
the compatibility condition

k >y v)* = S7HK*) >y v* (3.1

for all k € K,v € V. This condition is well defined: it is equivalent to require that
>y: K ® V — V, defined by

k >y vi=(STHKY) >y v, (3.2)

is an action of the Hopf algebra K on V that coincides with the starting one >y.
Indeed

k> (h>v)=k> (S > v =S &S > v =kh > v.
(3.3)

The condition (3.1) is also required for A a K-module *x-algebra. In this case (3.1) is
also well defined with respect to the multiplication in A. Indeed, k > 14 = e(k)14
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and

(kay > a)(ke > b) = ((S_l(k(*z)) > b*)(S_l(k(*l)) > a*))*
= (S7' (k") > (b*a")" =k > (ab) (3.4)

for all k,h € K, a,b € A. Here and in the following to lighten the notations we
frequently omit the subscript on the actions.

Example 3.1 Any Hopf x-algebra K with adjoint action K ® K — K,k > k' =
kayk' S (k) is a K -module #-algebra. This motivates the definition (3.1) following the
conventions in [10] rather than those in [13].

Example 3.2 Condition (3.1) is dual to that for a comodule *-algebra. Given a -
algebra A which is a right comodule algebra for a Hopf x-algebra i/, with coaction
§:A— AQU,a — ag ®ag, onerequires §(a*) = (a¢))* ® (aq))*. If K and U/ are
dually paired Hopf #-algebras, one has (k, u*) = (S~1(k*), u). Then A is a module
x-algebra with K-action k > a = a,(k, a) satisfying (3.1).

In the present paper we deal with braided Hopf and Lie algebras associated with a
(quasi)triangular Hopf algebra (K, R).

When K is quasitriangular we require its R-matrix to be antireal, that is, R*®* = R.
When K is triangular this condition coincides with the reality condition R*®* = Ry;.

3.1 Braided Hopf «-algebras

In this section we take (K, R) quasitriangular with R antireal. We use the braiding
Up:LXL > LXL, Wg(xXy) =Ry >y yXIR* > x,in (2.7) to induce the
s-structure from a K-module *-algebra L to the K-module algebra L X L defined in
§2.1 (and to more general tensor products of K-module x-algebras).

Lemma 3.3 Givena K -module x-algebra L, the K -module algebra LXK L with product
 in (2.6) and involution (x X y)* = Wr(y™ X x™*), that is,

(xXy)* = Ry >L xR R* >L y"), (3.5)
forx,y € L, is a K-module x-algebra.
Proof The matrix R being antireal implies that (3.5) is an involution. It is antimul-
tiplicative: using (3.1) for >, together with antireality and properties (2.5) of the

R-matrix we compute (omitting the subscript on the actions)

(xR BY))" = (xRe > ) B (R > 1)y')"
=Rg > (x(Ry > x)) KR > ((R* > y)y)"
=Rg > ((Ry > 1) x*) KR? > (y* (R > y)¥)
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=Rg > ((ﬁa > x’*)x*) XRP > (y/* R > y¥)

= (R R > X Rp,, > ) B RE ) > y R RT > y)
= (RgR:Ry > X )Ry R, > x*) K R'RP > y ") RERTR” 1> y*)
= (Rg > x)(RyR, > x*) K R"R? > y")R* > y*)

=R > x"®R > y")u(R, > x* KR* > y¥)
=Ry Ry".

Finally, we show the compatibility condition (3.1) between the *-structures. Recalling
that L X L has action (2.8), we compute

(k > (x IZ y))* = (k(]) > x & k(z) > y)*
= Ra > (k(l) > x)* X R > (k(z) > y)*

=Ry S7'(k}) > x* RR*S ™I (kS) > y*

= Ru (ST (k")) > x* BIR* (ST (k) ) > y*

= (S7H(k*) )R B> x* K (STH(K*)) o R* > y*
=S1(k") > (Ry > x* KRY > y¥)

=Sk > (xRy)* (3.6)

where for the third last equality we used the quasi-cocommutative condition (2.3). O
Considering the last and third expression in (3.6) one has
—1 /7% #* —1 /7% * o o—1 7% « "
[s71 & > (x2y)] = [ReS 715 & RROS NG v

and, recalling the action (3.2), this reads k >;x; (x X y) = kg > x W ko) >1 .
This proves that > [z, is an action of the coalgebra K on L X L.

Lemma 3.4 The action >: K @ L — L commutes with the braiding isomorphism
Wr:LXL - LXL, Wg(x X y) =R, > y XIRY 1> x of the original K -action >,

k> (Wr(x X y)) = Wr(k ~ (x X y)), 3.7
forallk € K,x,y € L.

Proof We first compute, using the antireality of the R-matrix,

RY> ) B Ry > v)* = SR > x* K S (R,™) > y* (3.8)
=SSR > xRS 'Ry) > y* =R > x* KRy > 7,
(3.9)
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for all x, y € g. This and the *-structure of L X L in (3.5) prove the lemma:

k> (Wr(xXy) =k >Ry >y X RY>x)
=[S7'k*) > Ry > y K RY > x)**
=[S7T'k*) > Rg > (Ry > ¥)* K RP > (R* > x)")]*
=[S kg >y RSTHES) > xtTF

=Ry > (STN(KY) > yH* BIRY > (ST (k};) > x)*
= Ra > (k(z) > y) |Z| Ra > (k(]) > )C)

= \IJR(k(l) > X IX k(z) > y) . O

Definition 3.5 A x-structure on a braided Hopf algebra L associated with (K, R) is a *-
structure on the K -module algebra L such that the braided coproduct Ay, : L — LXL
is a x-algebra map, Ay (x*) = (Ap(x))* with x-structure on L X L in (3.5).

The x-algebra map condition for Ay is equivalent to Ay = % o Ay o x. This is
well defined since * o Ay o : L — L X L is a coassociative K-module map and
an algebra map. The K -equivariance follows from that of A and the compatibility
(3.1). The x-algebra map property is straighforward and coassociativity is verified by
direct computation.

The (braided) antipode Sy, of a braided Hopf x-algebra satisfies Sy o* o0 S o* = id
and so is invertible. Using (2.11), Ay o S, = (S ® S1) o Wg o A, one gets:

ApoS;'=(5.'®8 ) oWroA,

with Wy the inverse of Wg: WR(x @ y) = R 7 y®Ry >z x, forx, y € L. Then,
using (3.5), one gets

AL(SL(x*) = ReRP > Sp.((x2)*) ®RYRg > Sp.((x1)™) ,
for each x € L, together with
AL(ST ™) = S () ™) B ST () ) - (3.10)

A braided Hopf *-algebra L acts on a K-module x-algebra A, with action» 4: LQA —
A satisfying (2.27), if the *-structure of A satisfies the compatibility condition

@raa) =R >SN b4 Ry >aa®) 3.11)
that generalizes condition (3.1).

Proposition 3.6 The compatibility condition (3.11) is well-defined.
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Proof The compatibility condition is equivalent to require that
—_ *
xmpai= @ e ST b Re o ah]

is an action of the braided Hopf algebra L on the K-module algebra A, which coincides
with the starting action » 4. We need to show that the map > defines a K -equivariant
action that satisfies (2.27). To lighten the notation we omit the subscript on the actions.
Firstly, > is an action. The condition x > 14 = e7(x)14 follows from the unitality
of R. Observing that the compatibility of the inverse antipode with the multiplication
uses the inverse braiding, SL_1 (xy) = (ﬁa > SL_1 (y))(ﬁa > SL_1 (x)), cf. (2.10),
we compute

(@) = v =[® & 57N > Re o))
[(ﬁ“ > (R &SR, & STy ))) > (R, > v*)]
= [(R"WR & ST D@ R, = 5710) » Re e 0]

=[(RR & s NRRy & 5710")) > RuRy v*)] .
For the last equality we used the analogous of property (2.4) for R. On the other hand

e R (GRS O G
— [(ﬁ" > S @) (ﬁﬂ > [(ﬁ"‘ > S ) e R, > v*)])]*
= [® & 5 @NRy, R B 570" > Ry Re 0]
- [(ﬁ"ﬁy > ST ) RRY & STLO™) » Ry Ry > v*)]*,

having used property (2.4) again. The two expressions then coincide due to the quantum
Yang—Baxter equation R12R13R23 = R23R13R12 Next we show K -equivariance:

k> (x> v) =k > [(ﬁ“ > 571 %) » Ry > v*)]*
[S’l(k*) > [(ﬁ"‘ > 571 (%) » Ry > v*)]]*
= [(571 @R & 5710N) » (57 0 Ra) & v) |

= [R5 E)e = 5710) b ReST ), B 0%)]|

=[RS &) B 57100) b ReS TG & 0Y)]

= [/ o 571 B ) e RS = 00|
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_ [(ﬁ“ > S (k) & 1)) > Re > (hy > v)*)]*

= (k(l) > .X) > (k(z) > U)

where for the fourth equality we used the co-commutativity (2.3) of the coproduct of
K and for the sixth equality the K-equivariance of the braided antipode S of L.

We are left to show that (2.27) holds: using the same property for the action » and
property (3.10) for the inverse of the braided antipode, we compute

x> (ad) = [(ﬁ"‘ > 57 ) b (Ruy & @) Rag > a*))]*
- [[(ﬁ“ > 57 ("), » RyRag & a™)]
x [(R> /& 5710) ) » Reey & @] ||
=[R" > RR" > 57'"),) » Ry >a")]"
x [R*R" > S*l(x*))m > (RyRy > a™]*
=[(R"R* R o > ST ') » R, > a)]"
x [R* R 1 > S (xy™) » (RyRy > a™)]”

=[R"RR" & 571 (x1)*) » (RuR, > a")]"

x [R'R" > 571 (x*) » (RyRuRy > a)]"
= [(ﬁu > S~ xw®) » RuR: > a*))]*

x [RR" > S 'xp*) » Ry > a™]

On the other hand, also using the antireality of R,
—_ — *
() > Ry B> @) (R > xp)) = @) = [(R“ > 87 (xw*) » Ry > Ry > a)*]
— — *
x [(R“ > STHRY & x0)*) » Ry a’*)]

rH -1 * R R 1" [ Rr¥ —1,p% * 1) T
=[(R > S~ (xy)) » RuRa & a ] [(R > SR > x0") > Ry > a )]
and the two expressions coincide due to K -equivariance of the braided antipode. O

3.2 Braided Lie %-algebras

In this section (K, R) is triangular, with R*®* = Ry; = R.

Definition 3.7 A x-structure on a K -braided Lie algebra g is an antilinear involution
% : g — g which satisfies (3.1) and in addition ([u, v])* = [v*, u*] forall u, v € g.
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The compatibility condition (3.1) is well-defined because it is equivalent to require
that the K-action >4: K ® g — g in (3.2), with (A, -) replaced by (g, [, 1), is an
action of K on the braided Lie algebra g, which coincides with the starting action [>.
The proof that >4: K ® g — g is an action on the K-module g is as in (3.1). The
K -equivariance property of the bracket, k >4 [u, v] = [kq) >4 u, ko) >4 v] for all
k e K,thatis,k >go[, ]=[, ok >gasmaps g ® g — g,is as in (3.4).

The compatibility of the action >4 with the braided antisymmetry [, ] = —[, JoWR
is due to K-equivariance of the braiding Wg, see (3.7). Similarly, the compatibility
of the action >4 with the braided Jacobi identity (which is an equality between maps
obtained from the bracket and the braiding) is due to K -equivariance of all the maps
involved.

In the present paper the main example of K -braided Lie *-algebra is that of braided
derivations Der(A) of a K-module *-algebra A. Its x-structure is defined by

V(@) = — (R Bperca) VR 4 aM) (3.12)

for all ¥ € Der(A), a € A. It lifts as an antilinear and antimultiplicative map to
a x-structure on the universal enveloping algebra L = U (Der(A)). This x-structure
is compatible with the braided action » 4: U (Der(A)) ® A — A defined by ¢ » 4
a = Y(a) for all y € Der(A) € U(Der(A)), a € A. Since Der(A) is the K-
submodule of primitive elements, S “1(¥) = —¢ and (3.12) also reads ¥*(a) =

_ *
((ﬁ“ >r ST W) Ry 4 a*)) . This implies the compatibility:

W bpa=(® oL S 0) e Rea a*)>*. (3.13)

This is the unique *-structure compatible with » 4, indeed (3.11) is equivalent to
(3.13).

If the K-module x-algebra A is quasi-commutative, see (2.17), the K-braided Lie
x-algebra Der(A) is also a left A-module with action - : A ® Der(A) — A defined in
(2.18). This is compatible with the s*-structure: on A @ Der(A) we have the x-structure
@@ vY)* = Ry > a*) ® (R* > ¢¥*) (cf. Lemma 3.3), then

(@ ¥)* =R >a") Ry >y")

foralla € A, ¢ € Der(A), thatis, x o+ = - o % as maps A ® Der(A) — Der(A).
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3.3 Twists and %-structures
3.3.1 Twist of Hopf %-algebras and their representations

A twist F of a Hopf x-algebra K is a twist of the Hopf algebra K that satisfies
F&* = (S® S)Fy . (3.14)
Then KF is a Hopf *-algebra with
xf: Kp = Kp, KT :=uk*u (3.15)
where u = F*S(Fy) and U = S(F")Fy is its inverse. From (3.14) we have u* = u,

which implies that *f is involutive. The twist condition (2.22) implies the identity
FA(u) =uS(F 5(2)) ® FﬂS(F ,3“)) or equivalently

FAU) = (u® u)F®" . (3.16)

Compatibility with the coproduct then follows: Ap(k*F) = Ap(k)*F®* forall k € K.

If A is a K-module *x-algebra, Af is a Kp-module x-algebra with % : A — Af that
is the same as the initial * as antilinear map. Indeed this is antimultiplicative:

(@aeb)* =Fy>b)*F >a)y=S'FH>brS'FE) > a*
=F' > b*Fy > a* = b* fa”, (3.17)

where we used (3.1) and (3.14). Moreover it is compatible with the Kg-action,
(k> a)* = (Sk)* > a* = (Spk))*F > a* = S;l(k*F) > a”, (3.18)

where we used (Sg(k))*F = (uS(k)u)*F = (S(k))* which holds since u* = u.

3.3.2 Twist of quasitriangular and braided Hopf %-algebras, and of their
representations

If (K, R, %) is a quasitriangular Hopf x-algebra with R antireal, so is (KF, Rf, *F)
with Re antireal. From (3.15), (3.16) and the equivalent expression F5>* (i ® it) =
AP (i1)F21, we compute

REFE™ = (U@ u) (2 RF)*®* (i @ it) = FA(WR™® AP (@)F2)
= FA(WRA“P (i1)F2; = FRF2; = Re

where we used the quasi-cocommutativity property (2.3).
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For a K-module algebra L one has the Krp-module algebra isomorphism

¢ LR Lf > (LR L), xRryt> oxKpy) :=F > xXFy >y
(3.19)

(leading to the monoidal equivalence of the categories of K-module algebras and K-
module algebras). When L is a K-module *-algebra so is L X L while Lg, (L X L)
and L X Lf are Kp-module *x-algebras. This latter with x-structure (cf. Lemma 3.3)

(x B 1) = W (3 K x*) = Ry > x%) B R B> %) .

Lemma 3.8 Let (K, R, x) be a quasitriangular Hopf x-algebra, with twist F and L
a K-module x-algebra. The isomorphism ¢ : L Kg Lf — (L X L)f in (3.19) is a
Kg-module x-algebra isomorphism.

Proof We show ¢l oo = xf. Using the compatibility condition (3.1), (3.14) and
Rr = F21RF we have, forall x,y € L,

¢ (@ e y)*) = ¢ {(F > x®F, > y)%)
=F'Rg > (F/ > x)" K FeRP > (F, > y)*
= FRgS ' (F7) > x* R FuRPST! () > y*
= F*RgF, > x* X FRPF > y*
= RFﬂ > x* X RF/S > y* = (x Xf y)*F.
O

Theorem 3.9 (L, Rg, %) is a Kg-braided Hopf x-algebra with x-structure that, as an
antilinear involution, is the same as that of (L, R, %).

Proof We already know that (Lg, Rp) is a Kp-braided Hopf algebra, we prove the
compatibility with *. From (3.18) we see that (Lf, %) is a Krp-module x-algebra.
Moreover the braided coproduct Ay, is a x-algebra map: Ay, (x*) = (Ar.(x))*F, for
all x € L. Indeed from (2.26) we have A, o * = go_l oAl ox = go_l okxo Al =
g loxogo Ap. = *f o Ap;. Thus (L, Rf, *) is a Kf-braided Hopf x-algebra
according to Definition 3.5. O

If a K-braided Hopf *-algebra L acts on a K-module x-algebra A then the twisted
Kr-braided Hopf x-algebra L acts on the twisted Kr-module x-algebra Ag with action

Al LEQF AF — AF, xPypa= (Ea Dre X) A (?a DA a) .
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The compatibility of the x-structure of Af with the braided action » 4, of Lf reads
G pa ) = R >p, S () »ar (Rep >ap @), cf. (3.11). This follows from

SNk > 0% = S;HSTHERS) > ox%) = ST > SN (), fork € K, x € L,
owing to the K -equivariance of the braided antipode St .

3.3.3 Twist of braided Lie %-algebras of derivations and gauge transformations

Let (K, R) be triangular. If g is a K-module Lie x-algebra then gg is a Kp-module Lie
x-algebra with the initial involution of g. The property ([u, v]f)* = [v*, u™]f for all
u, v € gg is proven along the same lines of those in (3.17).

We now consider the K-braided Lie *-algebra g = Der(A) of derivations of the
K-module *x-algebra A, with x-structure defined in (3.12) and its universal enveloping
x-algebra L = U(Der(A)). Similarly we have the K¢-braided Lie *x-algebra Der(Af),
of derivations of the Kp-module x-algebra Ar, with x-structure % := *Der(Af)? defined
asin (3.12),

V(@) = — (R Bercan V) e 27 @) (3.20)

for all ¢ € Der(Af), a € Af. The associated universal enveloping x-algebra is
U (Der(Af)).

Proposition 3.10 The isomorphism D : Der(A)g — Der(Af) of Kg-braided Lie
algebras of Theorem 2.3 is a Kg-braided Lie *-algebra isomorphism. It lifts to the
isomorphism D : U (Der(A)g) — U(Der(Af)) of Kg-braided Hopf x-algebras.

Proof We have to show D(y*)(a) = D(lﬁ_);‘(a) for all ¥ € Der(A)g, a € Ar. In
analogy with (3.17) we have (F* > a)* ® (Fy > ¥)* = (Fy > a*) ® (F* > ¥*) and
therefore,

D) a) = F oL v Fo > a) = Fo > ) F > a*)*
=[(Rg > S, '(Fo 1 ¥)(RPF" 1> a™)]*
= [RgFa 1 S (W) (RPF > a®)]*

where we used (3.12) with S(¢) = — (or (3.13)) and K -equivariance of the braided
antipode Sz . On the other hand, by definition of the *-structure on Der(Af) we have

DY) (@) = [Rep 1 S DANRE > a)T*
= [(Reg e DS, WNRE > a®)]*
= [(DRep >2 ;' @R > aHT*
= [(F'Reg > S, (W) FuRY & a)]* .

The proof then follows from Rr = Fy; RFL.
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The isomorphism D : U (Der(A)g) — U(Der(Af)) of Kg-braided Hopf algebras
commutes with the x-structures when restricted to the primitive elements Der(A)g
and, since these are the generators, on all elements of U/ (Der(A)F) The proof is by
induction. If x, y € U(Der(A)f) satisfy D(x*) = D(x)*, D(y*) = D(y)*< then so
does their product, D((x -fy)*) = D(y*-¢x*) = D(y*) o D(x*) = D(y)* o D(x)* =
(D(x) s D(»)* = (D(x £ y)*. o

Finally, for A a quasi-commutative K -module x-algebra, Der(A) is a K -braided Lie
and A-module *x-algebra. The twisted algebra Af is a Kg-braided quasi-commutative
x-algebra and Der(Af) a Kg-braided Lie and Ap-module x-algebra. In particular,

(W, IR = 0", ¥ IRe ,  (@oe ¥)* = (Reg > a@®) o (REY Bper(ar) ¥¥).
(3.21)

From Theorem 2.3, Corollary 2.5 and Proposition 3.10, D : Der(A) — Der(Af) is
an isomorphism of Kg-braided Lie and Agp-module x-algebras. As in Theorem 2.6, for
a Hopf-Galois extension this isomorphism restricts to equivariant derivations and to
infinitesimal gauge transformations:

Corollary3.11 For B = A" C A a (K,R)-equivariant Hopf-Galois exten-
sion with A a quasi-commutative H-comodule x-algebra, the isomorphism D :
Der(A)g — Der(Ar) of (K, re)-braided Lie and Ag-module x-algebras restricts to
isomorphisms

D: Der?WL,(A)F — Der?\FAHF (Ap) , D: z:lutR,_L;(A)F — autF;FF(AF)

of (Kg, Rp)-braided Lie and Bp-module x-algebras.

4 Principal bundles over Sg and their gauge transformations

In this section we consider the twist deformation of the Hopf SU (2)-bundle over the
4-sphere S2, and then of the SO (4)-bundle over S?, seen as a homogeneous space.

4.1 The instanton bundle

The H = O(SU(2)) Hopf-Galois extension (’)(Sg) C O(Sg) of [12] can be
obtained as a deformation by a twist on K = (O(T?) of the Hopf-Galois exten-
sion O(S*) c O(S7) of the classical SU(2) Hopf bundle, [3]. We use that twist
deformation in the framework of the theory developed in § 2.4, to obtain the braided
Lie algebras Der 5 (O(S; )) and aut e Sg)(O(Sg )) from their classical counterparts

Der yq# (O(S7)) and aut g4 (O(S7)).
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4.1.1 The classical Hopf bundle

Let us start with the Hopf—Galois extension B C A of the classical SU (2)-Hopf bundle
7. 87 — S§* The algebra A := O(S”) is the commutative %-algebra of coordinate
functions on the 7-sphere S7 with generators {z,,z5, a = 1, ..., 4}, satisfying the
sphere relation Y z¥z, = 1. It carries a right coation of the Hopf algebra O(SU (2))
of coordinate functions on SU(2). This is the x-algebra generated by commuting
elements {w;, wj, Jj=1,2}, with ) w;fw j = 1, and standard Hopf algebra structure
induced from the group structure of SU (2). The right coaction § : 0 — 0SH®
O(SU(2)) is defined on the algebra generators as

. t %
U— u®@w, u::(zl 214 Z4>, w:=<w] wz)‘ 4.1

—25 2} —2 24 wy wi

Here ® denotes the composition of the tensor product ® with matrix multiplication.
As usual the coaction is extended to the whole O(S7) as a x-algebra morphism.

The s*-subalgebra B = O(S57)«0PSU) of coinvariant elements for the coaction
is identified with the x-algebra O(S*) of coordinate functions on the 4-sphere S*. As
the algebraic counterpart of the principality of the Hopf bundle 7 : S7 — $*, one
has that the algebra O(S7) is a (not trivial) faithfully flat Hopf—Galois extension of
O(sh).

A set of generators for the algebra B is given by the elements

o i=2(z125 + 2524) . B i=2(2225 —2iz4) . X :=2z212] + 2025 — 2323 — 242
“4.2)

and their *-conjugated o*, 8*, with x* = x. From the 7-sphere relation ) z;zu =1,
it follows that they satisfy a 4-sphere relation «*a + *f + x2 = 1.

For future use we also note these generators satisfy the relations

(1 —-x)z1 =az3 — B 24 (1—=x)za =a%za + Bz3
(1+x)z3 =0a"z1 + B*22 (1 +x)z4 = az2 — Bzi 4.3)

together with their *-conjugated.

4.1.2 The equivariant derivations

Since the sphere S7 and §* are the homogeneous spaces S = Spin(5)/SU(2) and
§* = Spin(5)/Spin(4) ~ Spin(5)/SU(2) x SU(2), the Hopf fibration §7 — $* is
a Spin(5)-equivariant SU (2)-principal bundle. Then, the right-invariant vector fields
X € s0(5) =~ spin(5) on Spin(5) project to the right cosets S7 and S* and generate
the @(S7)-module of vector fields on S7 and the @(S*)-module of those on S*. A
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convenient generating set for the O(S”)-module is given by the following right SU (2)-
invariant vector fields on S” (cf. [11]):

Hy = %(Zlal — 270} — 2202 + 2505 — 2303 + 2305 + 2404 — 2305
Hy = (=219 + 23] + 209, — 2595 — 2303 + 230% + 2494 — 250)) 4.4)

Ejo = %(1133 —230] —z2402+2305) E_i0= %(@81 — 2703 — 2204 + 230)

Eor = J5(2283 — 2305 + 2ad1 — 2§0))  Eo—1 = J5(218s — 4o} + 2392 — 2305
Ei = —2403 + 230} E_1-1 =2}05 — 2304
Ei_1 = —2102 + 250f E_11 = —2201 +2705.

4.5)

Here the partial derivatives 9, 3, are defined by 9,(z.) = 84¢ and 9,(z}) = 0 and
similarly for 8, a,c = 1,2, 3, 4. The vector fields above are chosen so that their
commutators close the Lie x-algebra so(5) in the form

[Hi, H]=0; [Hj, E]=rE\;
[Ev, E\]=rH +rnHy; [E, Es]= Ny Eqs. (4.6)

The elements Hj, H> are the generators of the Cartan subalgebra, and E\ is labelled
by

r=(r,rn) el ={(£l,0), (0, £1), (1, £1)},

one of the eight roots. Also, Nys = 0 if r+s is not a root and Nys € {1, —1} otherwise.
The s-structure is given by

H;‘ =Hj, Ef =E_. 4.7

The *-structure on vector fields X is defined by X*(f) = (S(X)(f*))* = —(X(f*)*

for any function f, and one accordingly checks that for the vector fields in (4.4) and
(4.5), E_(za) = —(Er(z,))* and Hj(za) = —(H;(z,))*.

The vector fields (4.4) and (4.5), being invariant under the action of SU (2), projects

to a generating set for the O(S*)-module of vector fields on S*. Explicitly one finds,

HT = ady — o™y H} = Bdg — B*dp
o= \L@(zxaa* — ady) E™ o= %(—naa + a*dy)
ET| = oo — adps ET) | = —B*0, +a"dp
Efy = 5 (2xdpe — ) Ef_y = J5(=2xdp + p*0y)
ET_ | = B*do — adp E™| = —Bdy + o dp (4.8)

using analogous partial derivatives on O(8%). Indeed the O(S*)-module of vector fields
on S* can be generated by the five elements H,, = 3, — x,, D, for D = > Xu0y the
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Liouville vector field. The five weights p are those of the representation [5] of so(5)
with

1 1 1 1
X00 = X, XlOZﬁOl, x—lOZ\/_ia*s x01:7§/3’ XO—IZTEﬁ*

and sphere relation ) " x:;x“ = 1. The commutators [H,,, H,] give the generators in
(4.8).

Dually, the vector fields (4.4) and (4.5) are H = O(SU (2))-equivariant derivations
and generate the O(8%-module of such derivations

Der 1 (O(S7)) = {X € Der(O(5")) |8 0 X = (X ®id) 0 §}. 4.9
The general H-equivariant derivation is then of the form

X =b1H +b2H2+ZrbrEr (4.10)

for generic elements b;, by € O(S%). These derivations are real, that is X* = X, if
and only if b;’f = b; and b} = b_,. On the generators of O(S7) the derivation X is
given as

X:06) = 01, (z1z2z324) = M- (21 22 23 28)' (4.11)
where M is the 4 x 4 matrix with entries in (’)(S4)

ai bi_y =bj, boi
—b1-1 —a1 —=bg; —bio
bio bor —ax —biy
* * *
—by, by DY, @

M= . a1 =501 —b), ay =301 +b) .

4.12)
The derivation (4.11) restricts to
X7 0% — 0Y, (apa* prx) > M (afa* px) (4.13)
with
by bT—l 0 le ﬁbiko
~bi_y by b}, 0 V2b},
M™ = 0 b —by bi_i V2bio |- (4.14)

by 0 =b}_, —by 2bo
—big —boi —bly —b% O
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4.1.3 The Lie %-algebra of gauge transformations

We next look for infinitesimal gauge transformations, that is H-equivariant derivations
X as in (4.11) which are vertical: X7 (b) = 0, for b € O(S*). These are the kernel of
the matrix M™ in (4.14). Their collection aut g4 (O(S 7)) is clearly an O(S*)-module.

Itis also a Lie algebra with Lie bracket [b X, b'X'] = bb'[ X, X']forany b, b’ € O(5*)
and X, X' € autps4)(O(ST)).

The Spin(5) equivariance of the principal bundle 7 — S* implies that the Lie
algebra autp g4 (O(S 7)) can be organised using the representation theory of the Lie
algebra so(5). Indeed, the Spin(5) action on S7 lifts to Der MH (O(S87)) via the adjoint
action, AdgX = Ly 0 X o L;l, where, as usual, Lg(a)(p) = a(g~'p) for g €
Spin(5), p € S7 and a € O(S7). Since the Spin(5)-action closes on the subalgebra
O(S* < O(S7), it also closes on the Lie subalgebra auto(s4)((’)(S7)) of vertical
derivations, indeed Adg X (b) = Lg(X(L,'(b))) = Oforall g € Spin(5),b € O(S%).
Infinitesimally, [T, X](b) = 0 for all T € so(5), b € O(S*).

It follows that autos4) (O(ST)) = @5 Vy as linear space, with the sum over a class
of representations V; of so(5) of vertical O(SU (2))-equivariant derivations. This
decomposition will be worked out in details in § 4.1.4.

Proposition 4.1 The Lie x-algebra auto(s4)((’)(S7)) of infinitesimal gauge transfor-
mations of the O(SU (2))-Hopf-Galois extension O(S*) c O(S7) is generated, as an
O(S8*-module, by the elements

Ky = 2xH + B*V2Eo1 + BV2Eo_
K> :=2xH; + a*v2E10 + av2E_1o
Wop = «/E(ﬁHl +a*El +aE_))
Wo_1 == V2(B*Hi + a*E1_1 +aE_1_)
Wio := vV2(«Hy — B*E11 + BE1-1)
W_io == ﬁ(a*Hz +B*E_11 — BE_1-1)
Wiy :=2xE11 4+ av/2Eq — Bv2E10
W_i_1:=2xE_j_1 +a*V2Eo_1 — B*V2E_jg
Wi_y := —2xE|_| + B*V2E19 + av2Ey_,
W_i1 := —2xE_11 + BV2E_19 + a*~/2E,. (4.15)

The x-structure is given by

K}F =K;, W'=W. (4.16)

r
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Proof An H-equivariant real derivation X = by Hy + byH> + ), by E; vanishes on
O(SY) if M7 (cx a* B p* x)t = 0, for the associated matrix M™ in (4.14). This reads

bia +bi_ 1B+ bl B* + V2bjpx = 0
—bia* +b11 B + b1+ 2bjox =0
—bi_10 — b} a* + baf +2bx =0
—bija — bi_ja* —byf* + V2boix =0
bioa + biga™ + bo1 B + by BF =0. 4.17)
At the algebraic level of the present paper, it is enough to look for solutions with entries
of the matrix M” that are linear in the O(S*) generators. An explicit computation leads
to the derivations
Ui = i(2xHy + o«*V2E 0 + av2E_10)
Ur = i(2xHy + B*~2Eo1 + BvV2Eo-1)
Wi=(B"—BH +a*(Ei-1 — En) +a(=E_11 + E_1_1)
Wo =i((B*+ B)H + " (E1—1 + E11) + a(E_1_1 + E_11))
Wi =(a" —a)Hy + B*(E_11 + E11) — B(E_1-1 + E1-1)
Wy =i((@*+a)Hy + B*(E_11 — E11) + B(E1—1 — E_1_1))
Ty = 2x(Ey — E_1—1) + vV2(@Eo1 — a*Eo—y — BE10 + B*E—10)
T = i(2x(En + E—1-1) + vV2(@Eo1 + «*Eo—1 — BE10 — B*E-10))
T3 =2x(E1—1 — E_11) + V2(BE_10 + &* Eq1 — B*E10 — @ Eo_1)
Ty =i(2x(E1—1 + E_11) — V2(BE_10 + «*Eo1 + B E10 + aEo_) .

The derivations in (4.15) are obtained as the linear combinations

Ki=—iUs, Ky = —iUy, Wor=—%Wi+iWs), Wo_i =W —iW),
Wip = —2(Ws +iWs), Woio= LWs—iWs), Wiu=21T-im,
W_i1_4 =—%(T1+iT2)7 Wi =—%(T3—iT4), W_11 =%(T3+iT4).

Each vertical derivation, X = by H| + by Hy + Zr b E,withb;, by € O(S4) which
satisfy (4.17) is expressed as combination of the vertical derivations K ;, W, in (4.15)
as

X =c1 K1+ Ky + ZrCrWr
with coefficients ¢, ¢, ¢y € O(S4) given by
c1 = §(2xba + V2B bor + V28"bo-1) 2 = $(2xb1 + V2abig + v 2a*b_10)
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co1 = (ﬂ*bl +abyy +a*b_y) ?(ﬂbl +abi_ +a*b_i_y)
42(Ot*b2—,3b11+/3*b171) = 4( by + Bb_11 — B*b_1-1)

611—%(2xb11+x/>a b1 — fﬂ*blo) %( xb_1_1 +~2abg_1 —~/2Bb_ 10)

cl—1 = %( 2xbi—1 4+ ~2Bb1o + v 2a* by 1) oo = %( 2xb_11 + V2B* b—10+\/>oebol)~

(4.18)

The proof uses the equation (4.17) for the kernel of M”. Indeed, from (4.15) one
computes:

X =c K +62K2+Zrchr
= (cm«/zﬁ + c2x + co_1x/§/3*)H1 + (C]Zx + 10V 20 + c_10\/§a*)H2

+ (c1B*V2 + criav/2 + c_110*V2) Egy
+ (1BV2+ c1m1av2 + c_1_1a*V2) Eo_y
(c20"V2 + c1_1B*V2 — c11BV2) Exo
(202 — c_1_1B*V2 + c_11 BV2)E1o
(co1v/2a* — c10v/2B* + c112x) Eny
(c01«/_a+c 10V2B8* = 2xc_ 1n)E-n
(610\/_/3—01 12x + co_ 1V 20 YEi-1
(co—1v/2a — c_10v/2B + c_1-12x) E_1_4
=biH +byHy+ ) beEr

where the last equality follows from equations (4.17) for the coefficients b;, by.

The generatorsin (4.15) satisfy K ; (f*) = —(K;(f)*and W, (f*) = —(W_(f))*
for f € O(S7), from which one gets the #-structure in (4.16). This also follows from
HY = Hj and Ef = E_y, in (4.7) using (bX)* = b*X*, for b € O(S* and X a
derivation. O

The action of the vertical derivations K ;, W, on the algebra generators z, of O(S7)
is listed in Table 2 in Appendix 1.

Proposition 4.2 The generators in (4.15) transform under the adjoint representation
of so(5) with highest weight vector Wi1:

H;j> K =[H;,Kj]]=0, H;> W =[H;, W]=r;W;,
ErDKjZ[Er,Kj]Z—I’er,
Ec> Wy =[E, Wy l=rKi+nrnKy, E > Ws=I[E, Ws]=NWps, (4.19)

with Ny the structure constants of so(5) as before, with Nys = 0 if r+s is not a root.

Proof By direct computation. O
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Remark 4.3 The generators in (4.15) are not independent over the algebra O(SH.
Indeed one finds they satisfy the relations:

BWo_1 — B*Wo1 +aW_jg —a*Wip =0
—BKy +v2xWo —a* Wi +aW_1; =0
—B*Ky + V2xWo_1 —aW_1_1 +a*Wi_; =0
—aKy +V2xWig + B*Wi + W1 =0
—a*K| 4+ V2xW_194+ BW_i_1 + B*W_1; =0. (4.20)

These relations have a deep geometrical meaning. They are the vanishing ‘vertical’
components of five vector fields which are horizontal for a canonical connection on
the principal bundle [6]. These horizontal vector fields carry the five dimensional rep-
resentation of so(5) the smallest not trivial vector representation of so(5) with highest
weight vector of weight (1, 0). On the other hand, any d-dimensional representation
of so(5) as vertical vector fields on S” vanishes when d < 10. Indeed, the only verti-
cal equivariant derivation which is linear in the generators of O(S#) and with weight
(1,0) is X190 = a«*Hy + B*E_11 — BE_1—_1. This generator is annihilated by Ej i,
E1pand E1 1, butitisnotby Ep ;. Since Eg 1 > X19 has weight (1, 1) which is not
present in the five-dimensional representation, we conclude that the minimal space of
(linear in the generators of (’)(54)) derivations is ten-dimensional.

4.1.4 Arepresentation theoretical decomposition of aut s, (O$7))

The result of multiplying the generators of O(S*) with the ten vector fields in (4.15)
can be organised using the representation theory of so(5) (cf. [1, 2]). An irreducible
representation of so(5) is characterised by two non negative integers (s, n) and we
denote it [d (s, n)]. It has highest weight vector of weight %(1, 1) + n(1,0) and is of
dimension d(s, n) = é(l +5)(14+n)(2+s+n)(3+ s +2n). The generic vector field
in the O(S*)-module aut 54)((9(57)) is a combination of the vector fields in (4.15)
with coefficients given by polynomials in the generators of O(S%). The algebra O(SH
decomposes in the sum of irreducible representations of so(5) (spherical harmonics
on §%) as

os* = P1d(. m)] (4.21)

nENO

with [d (0, n)] the representation of highest weight vector «” of weight (n, 0) consisting
of polynomials of homogeneous degree 7 in the generators of O(S*) (see Appendix 1).

The 50 vector fields obtained by multiplying the vector fields in (4.15) with the
generators of (’)(54) can be arranged according to the representations [35][10] B [5].
The highest weight vectors for these three representations are worked out to be given
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respectively by:
Zy =aWyy,
Y11 = V2x Wiy +aWo — BWio,
Xi0 = B*Wii + BWi_1 — aK | + 2xWyo, (4.22)

with the label denoting the value of the corresponding weight.

Lemma 4.4 When represented as vector fields on the bundle, the representation [5]
generated by the vector Xy above vanishes. Also, Y11 = —\/iW“ so that the repre-
sentation [10] generated by Y11 is the one in Proposition 4.2. The vector Z>1 makes
up the representation [35], none of whose vectors do vanish.

Proof The action of so(5) on the vector X ¢ yields the additional four vectors

Xoo = B*Wor — BWo—1 +a*Wio —aW_jo
Xo1 = BKy — V2xWoi +a* Wi —aW_y;
X*l() = _a*Kl + \/ExW,m —+ ,3W,1,1 =+ ﬂ*W711
Xoo1 = —B* Kz +~2xWo_1 —aW_i_j +a*Wi_;. (4.23)
These five derivations vanish on O(S”); they are in fact the vanishing combinations

of derivations in (4.20). (The relations (4.20) have then a representation-theoretical
meaning.) Using the 4-sphere relation and the relations in (4.3) one shows that

Y11 = V2x Wi +aWo — BWig = —V2Wiy. (4.24)
Then the vector Y1) generates the starting representation [10] in (4.15) as stated. O

By construction auto(s4)((’)(S7)) is closed under commutator. It turns out that
the commutators of the derivations in (4.15) can be expressed again in terms of the
derivations in (4.15) with coefficients which are linear in the generators of O(S%) (all
commutators are listed in Appendix 1. More specifically we have the following:

Lemma 4.5 The commutators of the derivations in (4.15) can be organised according
to the representation [35] & [10] of so(5) already found and generated by a W11 and
Wii.

Proof There are 45 commutators. The non vanishing commutator with highest weight
is [W11, Wio] with weight (2, 1). A direct computation shows that

[Wit, Wiol = —v2a Wy,
and the corresponding representation is the [35] found in the previous lemma.
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The commutator [Wy1, Wi_1], the only one of weight (2, 0), belongs to the repre-
sentation [35]. The latter comprises also two combinations of the three vectors

[Ky, Wiil, [K2, Wiil,  [Wio, Woil.
of weight (1, 1). On the other hand, their combination
Ty = [Ky, Wil + [K2, Wil + [Wio, Woil

is annihilated by all positive element of so(5) and generates a copy of the representation
[10]. In fact this is just the starting representation in (4.15) of Proposition 4.2. An
explicit computation gives

[K1, Wii] = 2xWi1 — v2BWig
[Ka, Wii] = 2xWi1 + v2aWp,
[Wio, Woil = —v2BWio + v2aWo,

so that using the relation (4.24) one obtains
Ti = 2V2Y1 = —4W,. (4.25)
Thus the representation [10] generated by 777 is the one in (4.15) as stated. O

Proposition 4.6 The Lie algebra aut g4 (O(S7)) decomposes as
autos (O(ST) = (P, 1d@.m)].

Here [d(2, n)] is the representation of so(5) as derivations on O(S”) of highest weight
vector " W11 of weight (n+ 1, 1) and dimension d(2, n) = %(n +1D)(n+4)2n+5).

Proof From the splitting (4.21) of O(S*) (and Appendix 1), we need to consider the
10 - d(0, n) vector fields obtained by multiplying the 10 vector fields in (4.15) with
the polynomials of degree n in the generators of O(S*) that are in the representation
[d(0, n)] of highest weight vector «”. Of these, & W1 = a" 1751 isa highest weight
vector and generates the representation [d(2, n)]. For the remaining vectors fields,
o™~ 1Y}y is a highest weight vector generating the representation [d(2, n — 1)]. There
is then the highest weight vector «” ~! X1 generating the representation [d(0, n)]. And
finally there is the highest weight vector «” 3 p?Z,| = a3 Z, of the representation
[d(2,n—2)] (here p? := aa*+ BB*+x2 = 1). There is no room for additional vectors
since a direct computation shows thatd (2, n) +d(2,n—1)+d(0,n)+d(2,n—-2) =
10-d(0, n). Since Z1 = aW;1, Y11 = —ﬁWU and X 19 = 0, the only representation
which has not yet appeared in lower degree is [d(2, n)], the one of highest weight
"Wy O
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4.1.5 Braided derivations and infinitesimal gauge transformations

The right invariant vector fields H; and H; of Spin(5) are the vector fields of a maximal
torus T? C Spin(5). They define the universal enveloping algebra K of the abelian
Lie algebra [H;, H,] = 0. Their action (4.4) on O(S”) commutes with the O(SU (2))
right coaction on O(S7). To the torus 2-cocycle of [3, Ex. 3.21] there corresponds then
a twist

F.— em‘é)(H1®H2—H2®H1) ., 6eR, (4.26)

with universal R-matrix Rp = ?2. In fact these elements belong to a topological
completion of the algebraic tensor product K ® K. This fact does not play a role here
since we diagonalise F (we systematically use it on eigen-functions of the generators
Hy, Hy).

The twist F in (4.26) hence leads to the O(SU (2))-Hopf-Galois extension O(Sg ) =
O(8))°PSU@) ¢ O(s)) introduced in [12]. It satisfies equation (3.14) so that it is
compatible with the x-structure. To conform with the literature, in the following we
use the subscript 0 instead of F for twisted algebras and their multiplications, as well
as for module structures. The x-algebra O(Sg ) is generated by coordinates z,, z)5, a =
1,2, 3, 4. Their commutation relations are obtained from (2.25) given that for the action
of Hy and H, the z, have eigenvalues (1, —1), J(=1,1), 2(=1,=1), 21, 1), for
a =1, 2, 3, 4. The only nontrivial relations among the z, are:

210023 = €™ 9230021, 210074 = ¢ 0240021 ,
w23 = e V230020, 220074 = € V240022 .

Those with the z} are obtained using that they have eigenvalues opposite to the eigen-
values of the z,. These coordinates satisfy the relation zjepz] + 220925 + 230923 +
249927, = 1. The *-subalgebra O(Sg ) of O(SU (2))-coinvariants is generated by

o= 2(z1023 + 250024), B 1= 2(220023 — 2] %024),
X 1= Z1epZ] + 220025 — 230923 — Z4epZ}. (4.27)

The only nontrivial commutation relations are
O(JQB = 6‘_2ni0609 X, Xeg (?)* = 6271’1'9 B* o X (428)

and their complex conjugates. They can be obtained from the twisted multiplication
rule (2.25) by using that «, {3, x are eigen-functions of H; and H,, with eigenvalues
(1, 0), (0, 1) and (0, 0) respectively. They satisfy the relations xxeg &* + e 3* +XesX =
1. From these one then establishes:

(1 =X)epz1 = xXepz3 — 2400 ™, (1 = X)es22 = z400" + Pesz3
(1 +X)egz3 = (X*ooZ1 + 6*0912 s (1 +X)egz4 = Z20gX — ZIOHB . (4.29)
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Remark 4.7 The relations (4.29) are the analogues of the classical ones (4.3). However,
in passing from the algebra O(S*) to the algebra O(Sg) we rescaled by a phase the
classical elements «, §. In the vector space (’)(Sg ) = O(8%), one has X = x and

* * —zio * * —zi0
& =2(Z10923 + 270924) =€ 2 2(2123 +2524) =€ Z «
wif

it xi6
B =2(z20023 — Zjesza) = €2 2(2025 —2Zjza) =€ 2 B.

Since the Lie algebra so(5) is a braided Lie algebra associated with K with trivial
R-matrix R = 1 ® 1, we can twist it to the braided Lie algebra sog (5) associated with

(Kg,RE = ?2). It has Lie brackets (see Proposition 2.2)

[Hy, Holp = [Hi, H2l=0; [Hj, EJe = [H}, El =rjEx ;
[Ev, EJf=[E, E\]=r1H +1rH;
[Ey, Eslp = ¢ "OS[E,, Eg] = e TSN Eyys (4.30)

with r A's := rysp — rps1. Here, as for the so(5)-commutators in (4.6), Nys = 0 if r+s
is not a root.

Similarly, the O(S*)-module and Lie x-algebra Der y 1 (O(S 7)) is deformed to the
O(Sg)-module and braided Lie x-algebra (Der 5 u (OGS, [, I, -F, %) associated
with (KF, Rr). The module (Der 5 (O(S7))f is generated by derivations H ; and Ey
with module structure in (2.34):

a-fHj=aHj, asFE = e TSN 4 E,

foralla € O(Sg ) and as € (’)(Sg ) eigen-functions of H; with eigenvalues s; (being
E, eigenvectors of H;). The Lie brackets are determined by those of sog(5) in (4.30)
using equation (2.35) for the module structure. The *-structure is the same as that of
Der yu (O(S7)), as stated in the first sentence of § 3.3.3.

The Lie x-algebra of infinitesimal gauge transformations aut 54)((’)(57)) is gen-

erated, as an O(S*)-module, by the operators in (4.15). Its twist deformation is the
O(Sg)-module and braided Lie x-algebra (auto(s4)((9(S7))F, [, 1r -F *) associated

with (Kf, RF = fz). It has braided Lie bracket determined on generators:

(K1, K2de = [K1, K213 [Kj, Wile = (K, Wil ;
[We, Welp = e 0" [W,, W], (4.31)

in parallel with the result in (4.30). On generic elements X, X’ in the linear span of
the generators in (4.15) and b, b’ € O(SY), the equation (2.35) gives

(bFX,0 ¢ Xl =bFRrg >b0)F[RF*> X, XJF. (4.32)
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From Corollary 3.11 we have Der yx (O(Sg)) = D((Der pn (O(87))F) with D an
isomorphism of Kg-braided Lie and Ar-module x-algebras. In particular D(H j),; =
D(H]’.‘) =D(H;) and D(E)* = D(E}) = D(E_y), j = 1,2,r € T (cf. (4.7)). Thus,
recalling (4.30):

Proposition 4.8 The braided Lie x-algebraDer 51 ((’)(S; )) of equivariant derivations
of the O(SU (2))-Hopf-~Galois extension O(Sg) C O(Sp) is generated, as an O(Sg)-
module by elements

H;:=D(H,;), E :=D(E), j=12, rel (4.33)

with bracket closing the braided Lie algebra sog(5):

[Hy, H>lre = D((Hy, H2]) =0 ; [Hj, Ere = D((H,, E(]) =1 E ;
[Er. E-ilpe = DUE E-) =Y rif; :
[Eh ES]RF = e—inGrAs D([Eh E]) = e_inemsNrsEHs (4.34)

(and Nys = 0 if r+s is not a root). The O(Sg)—module structure is in (2.36) (with

o = og). The x-structure on generators is given by ITI]* = ﬁj and Er* =E_,.
For as € O(Sg ) an eigen-function of H; of eigenvalue s, the derivation E; acts as

Ec(as) = (F* > Ep)(Fy > as) = e TS E, (as) . (4.35)

On the product of two such eigen-functions as, am € O(Sg ), we can explicitly see

that E r acts as a braided derivation, with respect to the braiding Rr = F»; F= ?2:

Er(as‘eam) — efine rA(s+m)e7in0 sAM Er((lsam)

— efina(r/\(s+m)+ sAM) [Er(as)dm + as Er(am)]
— efine(rA(s-#mH sAM) [eine (r+s)Am E, (05)090m + ein() SA(r+m)as).H Er(am)]
— e—inGrAsEr(as).Oam + e—2in0(ms+ rAm)as.() Er (am)

= Er(as)Oeam + eizmemsas‘egr(am)- (436)

Using these results for the subalgebra auto(sg) ((’)(Sg)) = D(autp g4 (O(S7))E) of

vertical derivations, we have the following characterization of autey s (O(Sg ).

Proposition 4.9 The braided Lie *-algebra auto(sg)(O(Sg)) of infinitesimal gauge

transformations of the O(SU (2))-Hopf-Galois extension (’)(SgL ) C O(Sg ) is gener-
ated, as an (’)(Sé1 )-module, by the elements

Kj:=D(K;), Wy:=DW,), j=12, reTl (4.37)
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with bracket given in Table 1. The braided Lie bracket of generic elements X, X in
aUtO(S;‘)(O(S(Z)) and b, b’ € (’)(Sg) is then given by

[bes X, b'es X'Ir; = bes(Reg > b)es[RE* > X, X'Ig. . (4.38)

;}; ~ ~

The x-structure on generators is given by K j = Kjand W:~k = W_y. It is extended
on the whole aut o Sg)(O(Sg )) via (3.21).

Proof For all X, X' € auto(sg)((’)(S;)) we have [X, X']s. = D([X, X']f) from
Proposition 2.6 with the bracket on the right hand side given in (4.31). Using the
classical Lie brackets listed in Table 3 of Appendix 1, we can compute the brackets
of the generators of the braided gauge Lie algebra aut 54 (0(597 )). For instance, for

[W_ -1, VT/(n]RF we first compute

[W_i—1, Worle = €™ [W_1_1, Wo1] = "0 (V2BW_1_1 — V2" (K| + K2))
=002 F Wo1-1 — V20" £ (K1 + K2)).

Here we used (4.31) to relate the brackets [ , ]r and [ , ], the module structure
of autO(S4)(O(S7))F in (2.34) and that the coordinates of the sphere §4 are eigen-
functions of H| and H». Next, applying the algebra map D leads to

(W_i_1, W01]RF =D(W-1-1, Wo1lp)
= 2702 o BesW_1_1 —e™/2 Pro* (K1 + K>).
Here to pass from the generators of O(S4) to those of O(Sg ) we used (see Remark 4.7):

wif

o= QPu& = eﬂzﬁcx, B= ggPB=e 2. (4.39)

Half of the brackets among the generators (4.37) of the braided Lie algebra
aUtO(S;})(O(Sg)) are listed in Table 1. The remaining ones can be obtained simi-
larly, or more directly using the compatibility of the sx-structure with the braided Lie
algebra and (9(54)-m0dule structures as in (3.21),

(X, XFIje = (X, X'IR)*, (0o X)™ = (Rey & bR 1> X).

Recalling that D is a x-isomorphism we have

~

K;=D&KH=DK)=K;, W =DW})=DW_p)=W_.

%
J
Therefore,

[Kj, W_rlre = [KF, W Ire = ((Wr, Kjre)™
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[W_r, W_slge = (W, Wlre = ((Ws, Wilgo)*
with
[(We, Kjlge = —(K;, Welge » [Ws, Welge = —e 20N Wy, Welg, -
For instance,

(K2, Wo—1lre = —([K2, Woilre)* = —v2(e ™ ¢ ooy Wiy + €™ g ctes W_11)*
= —ﬁ(eim‘e (pqaogw_l_l + emi0 (pi(x*og Wl—l)

while

[Wio, WO—l]RF = —(e O W_yp, VT’Ol]RF);k
= —"0V2(P g BesWo10 + @t ey Wor)*
= -0/ (PEB*%)WGO +e 20 g oteg Wo—1)
= —/2(e#0 @EB*‘GWIO + Qa0 Wo_1) -

O
The action of any element VT’r on an algebra element a5 € O(Sg ) is as in (4.35),
Wi(as) = e 0" SW,(as) , (4.40)
with a braided derivation property as in (4.36),
We(asesam) = Wr(as)epam + ¢ 270" S agey W, (am). (4.41)

4.2 The orthogonal bundle on the homogeneous space S‘é

The 4-sphere of the previous example is the prototype of more general noncommu-
tative f-spheres 502". These are quantum homogeneous spaces of quantum groups
SOp(2n + 1,R) [7, 14]. The Hopf-Galois extension (’)(Sg") = O 0p(2n +
1, R))COO(SO@(Z"'R)) C O(S0y(2n + 1, R)) was obtained in [3] from the extension
of the classical SO (2n)-bundle SO (2n + 1) — $" via a twist deformation process
for quantum homogeneous spaces.

As in the previous section, the modules of infinitesimal gauge transformations of
these noncommutative Hopf—-Galois extensions are obtained by deforming those of
the corresponding classical bundles. We study here the case n = 2 of the Hopf—Galois
extension O(Sg) = O(S0g(5, R))c0OS0p(4.R) O(S0y(5,R)). We address the
general case in [6].
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Table 1 The braided brackets of vertical derivations

gl»EZ]RF V2(pha -9W10*wo¢0¢-9W—1o)

K1 Wolge = —v2 0 ﬁ-eKz + 2xeg Woi

1?17VA‘7171]RF = —2xegW_ 1+«f€’“9<ﬂ B* e Wio

K. Wiolge = V270 o Bag Wiy —fe”’9<ﬂ Breg Wiy
Ky, 11]RF =2xegWi1 — V2770 pg ey Wi

K>, Ol]RF V2T gt ot ey Wit 4 v/26™H pooceg Wi
Ko Wil = 2xeg Wit — V27 gocey Wy

K, W]()]RF —2Xo9W107\/></JD¢¢X¢gK1

2. Wiilge = 2xeg W11 + 2™ oo ox o5 Woy

o1 W1 1Re = V2 @pBeg Wiy + v2e™ ococoo(Kzflﬁ)
01,W10]RF V20 BesWip — V261 go o eg Wy
1,W11]RF V2 ppBeg Wi

—1> Wiolre = V2 pocx oy Wi_|

1-1, Witlge = —V2e7719 gy oceg Wi

WII]RF V2 pax o Wiy

ph‘i’Ol]RF V210 g Bog Wi — v/2e™1 pha*ey (K + K2)
—1-1, Wi-1lge = V2e7HT0 gk B e Wy

—1—1 W10 Re = f%coc-eW—l 1+ /2em WBB*-Q(Kl-i-Kz)

—1- lszl]RF__2x°9(Kl+K2) V2 pocteg W 10—f<ﬂ(5f5-9W0 1
—10> Woilre —fezmgwﬁﬁ-ow 10 + V2 @F ooy Woj

0,~W1 1Re = —V2 @l ot eg Wiy +2e 7™ ot B¥ep (K — K1)
10, W_t0lpe = f(wﬁﬁ*-an*- op Boo Wo—1)

11, Wotlre = V2627 g Beg W_1; N
0-1: WorlRe = V2(¢50*es W10 — e eg W_10) ~
11, Wi—11ge = 2xep (K1 — K2) = V295 B*eg Wo1 + v2 gt egW_10

=N Nz

e ResRaslasNas e lasNas e Res e Ras RasBasRas Ras el lra Rl i s )

Sz %z %2 Sz %z %z %z Sz Sz Sz %z Sz sz =t

Let O(M (4, R)) be the commutative complex *-algebra with generators m 7 , and
capital indices J, L running from 1 to 4. It has the standard bialgebra structures

AMY=M@M , eM)=14, for M= (myp), (4.42)

in matrix notation, where ® denotes the combination of tensor product and matrix
multiplication. The Hopf algebra O(S O (4, R)) of coordinate functions on SO (4, R)
is the quotient of O(M (4, R)) by the bialgebra ideal

lo=(M'OM—0Q: MOM —0). 0:=(3%)=0=0" @43
and the further assumption det(M) = 1. Indeed, this is a x-ideal for the *-structure
*(M) = QM Q" in O(M (4, R)). If we introduce on the set of indices {1, ..., 4} the
involution defined by 1’ = 3 and 2" = 4, the *-structure can be given as

(mj)*=myp, J,L=1,---,4 (4.44)

The *-bialgebra O(S O (4, R)) is a Hopf s-algebra with antipode S(M) := QM' Q.
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Similarly, one has the algebra O(M (5, R)), the commutative *-bialgebra with gen-
erators ny, (capital indices J, L now run from 1 to 5). The coproduct and counit are

A(Ny=N®N, &(N)=1s, for N:=(nsp). (4.45)

The algebra of coordinate functions on SO (5, R) is the quotient of O(M (5, R)) by
the bialgebra *-ideal

Jo=(N'QN—Q: NON'— Q). Q== (nj%?) (4.46)

and the additional requirement that det(N) = 1. The *-structure is now

(nJL)*=nJ/L/a J’L=11"'15 (447)

with5" = 5. Then O(SO (5, R)) is a Hopf *-algebra with antipode S(N) := QN oL

We shall select the last column of N by writing nj5 = u;, for j = 1,---,4 and
nss = X.

The surjective Hopf *x-algebra morphism

7:0(S0G,R) — OSO04,R), Nir— (1‘6“1)) (4.48)
induces a right coaction of O(S0 (4, R)) on O(SO (5, R)):
3:=>1d®m)A: OSO(5,R)) — OO, R)) ® O(SO(4, R))

N— N® (10‘4 ?) ) (4.49)

The *-subalgebra of O(SO(5, R)) made of coinvariant elements is isomorphic to the
s-algebra of coordinate functions O(S*) on the 4-sphere S*. It is indeed generated
by the elements u;, u} and x in the last column of the defining matrix N = (n, ) of
O(S0(5, R)), which satisfy the sphere equation (S(N)N)ss = 2(uju; +u§u2)+x2 =
1. The algebra extension O(5%) = O(S0(5, R))©“CEOER) = O(50(5,R)) is
Hopf-Galois.

The coordinate algebra of this orthogonal 4-sphere is isomorphic to the one of the
4-sphere of the previous section (the base space algebra of the SU (2)-fibration) with
generators in (4.2) via the identification

uy — %a, Uy — \/Liﬁ’ X — X. (4.50)

We now determine infinitesimal gauge transformations of the Hopf—Galois exten-

sion O(S*) € O(S0(5, R)) using, as done for the previous example, the representa-

tion theory of so(5) as vector fields on the bundle. Like it was the case for the instanton
bundle, the O(5*)-module of infinitesimal gauge transformations is generated by the
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ten generators of so(5). The crucial difference (see Proposition 4.13) is that in the
present example, vector fields of given degree n in the generators of O(S*) split in the
sum of two irreducible representations with distinct highest weight vectors with same
weight.

We then start with the O(S*)-module of equivariant derivations for H :=
O(S04, R)).
Der pu (O(SO(5,R))) = {X € Der(O(SO(5,R))) |6 0 X = (X ®1id) o 5}.
4.51)

Let 9;; denote the derivation on O(M (5, R)) given on the generators by 9;,(ngr) =
Sikdyr, for I, J, K, L = 1,...,5. Then, recalling the coaction (4.49), Der 5 u
(O(S0(5, R))) is generated by the derivations

Hy :=n1g0ix —n3k 03k
E10 :=nsxd3x —nigdsg
Eo1 := ns5kx sk — nak 0sg
E1) :=nyg 03¢ — ik Osx

Hy ;= npg0,x — nag dux
E_10 :=n3kx0sx — nsgdix
Eo—1 := n4g dsg — nsk dag
E_ 11 :=n3g0x —n4g0ix

Ey—1 :=n4g 03 — nigoak E_11 :=n3g0ax — n2k ik (4.52)
with summationon K = 1, ..., 5 understood. They satisfy H¥ = H; and E} = E_,.
These ten generators close the Lie x-algebra of so(5) in (4.6), from which the labels
used. It is important to notice that due to the equivariance for the right coaction of
O(SO(4,R)), when applied to a generator n g, these derivations do not move the
second index. This fact will play a role later on. Being equivariant, they restrict to
derivations on the x-subalgebra O(S8%) of coinvariants:

ELd *

71T0 :xa,,f —ulax

Hzn = U0y, — uﬁa@
E™ ) =ujdy — x3y,
E(j)Tl = xaui — U0y E(j)T—l = u;ax — X0y,

ET\_| = uj0y, —u3dy,

E™\) = uids — uzd, . (4.53)

ET, = MzauT — ula,,;

T ¢
El—l = uzauT — u]auz

using partial derivations for the generators 75 of O(S*). With the isomorphism in
(4.50) these derivations coincide with the ones in (4.8).

The generic equivariant derivation is of the form X = b1 H + byH> + Y, biEr,
withb;, by € O(S* and H i, Exin (4.52). The condition for X to be vertical only uses
its restriction to O(S%), that is the derivations in (4.53) and thus coincides with the
conditions (4.17) under the isomorphism (4.50). Then, in parallel with Proposition 4.1
for the generators (4.15), and noticing that its proof only uses the algebra structure of
O(S5*), we have the following result (we are dropping an overall factor of 2).
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Proposition 4.10 The Lie *-algebra autyg4)(O(SO(S, R))) of infinitesimal gauge
transformations of the O(S O (4, R))-Hopf-Galois extension O(S*) c O(SO(5, R))
is generated, as an O(S*)-module, by the derivations

Ky :=xHy+u5Eq +u2Eo—; Ky :=xH+ufEio+ui1E_jo

Woi :=usHi +uiEn +uiE_y; Wo—i :=u3Hy +uifEi—1 +u1E_1_
Wio :==u1Hy —u3E11 +u2E1—4 W_io:=u{Hy+uSE_11 —u2E_j_,
Wi i=xE11 +ui1Eor —uxEqg W_i—1:=xE_j_1 +ufEo—1 —usE_jo
Wit = —xEi1+usEjo+u1Eg—y Woyp:= —xE_11 +usE_10+ ujEo

(4.54)

with K ;“ = Kjand W} = W_,. They are eigen-operators for Hy and H» and transform
under the adjoint representation [10] of so(5) (that is (4.19) hold), with W11 the highest
weight vector.

In particular we have that H; > K; = 0 and H; > W; = r;W,;, and this induces a

(left, see later) Z>-grading on the derivations. They satisfy analogue relation of those
in (4.20):

urWo—1 —us Wor +uitW_io —uijWip =0
—ur K> + x Wy —uTWll +uW_11 =0

uy Ky —xWo—i +ui Wiy —uifWi—; =0
—u Ky +xWio+u; Wi +uaWi—1 =0
uTKl —xW_10 — MZW—I—I — uﬁW_ll =0. (4.55)

Remark 4.11 The Lie bracket of the generators H; and W, are those in Table 3 of
Appendix 1 (with the identification (4.50) and up to a rescaling). While the Lie *-
algebras autO(S4)((’)(S7)) and autp g4y (O(SO(S, R))) have the same Lie bracket on
generators, they differ as O(S*)-modules, and hence as Lie x-algebras, since in the
orthogonal case there is no analogue of the constraint (4.24) occurring in the instanton
case.

Asinthe case of the instanton bundle (cf. Lemma4.4), the fifty vector fields obtained
by multiplying the vector fields in (4.54) with the generators of O(S*) can be arranged
according to the representations [35] @ [10] & [S] of so(5). The highest weight vectors
for these three representations are given respectively by:

Zyy =u1 Wi,
Yii =xWi +uiWor —uz Wy,
Xi0 = usWii +ua Wiy —u1 Ky + xWo, (4.56)

with the label denoting the value of the corresponding weight. These are the analogous
of the vector fields found in (4.22) for the SU (2) Hopf bundle.

@ Springer



Braided Hopf algebras and gauge transformations... Page410f49 13

When represented as vector fields on the bundle, the vector X is zero (because
of relations analogous to (4.23)) and the representation [5] it generates vanishes. On
the other hand, the vector field Y7 is no longer proportional to Wy, as it was for the
Hopf bundle case due to the constraint (4.24). An explicit computation, using also the
condition (NTN)sg = 85k yields:

Wi = (xnag — uansg)03x + (—xnig +uinsg)osx + (uanix — uin2g)dsg
Yii = ui(uanix —uinag)oix +uz(uanix — uinag )k

+ (nagx — u2dsx +uj(uanix — uinag)) Bk

+ (—nik +uidsg + us(unig — uin2k))dax + x(uanix — uinag)dsk.

The vector field Y11 generates a different copy of the ten-dimensional representation of
so(5) that we denote bymto distinguish it from the ten-dimensional representation
[10] of highest weight vector Wy. Notice that while [10] consists of vector fields which
are combinations of those in (4.54) with coefficients of degree zero in the generators

of O(S5*), elements of ﬁa are combinations with coefficients of degree one.

—

Next, in parallel with Lemma 4.5, the representation [35] @ [10] of so(5) just found
are the ones that occur in the decomposition of the commutators.

Lemma 4.12 The commutators of the derivations in (4.54) can be organised according
to the representations [35] @ [10] of so(5) of highest weight vectors a W11 and Y1,

respectively.

Proof There are 45 non vanishing commutators. The non vanishing commutator with
highest weight is [W11, W1o] with weight (2, 1). A direct computation shows that

[Wit, Wio]l = —u1 Wiy

and the corresponding representation is the [35] found above.

The other highest weight vector, of weight (1, 1), is
T = [Ky, Wil + [K2, Wipl + [Who, Woil = 4(x Wi —ua Wi + uy1 Wor) = 4Y11.
Thus the representation generated by 77 is the ten dimensionalﬁ()\]. O

By using the decomposition of O(S*) in (4.21), in parallel to Proposition 4.6, we
have:

Proposition 4.13 There is a decomposition

autosH (OSSO, R)) = €D [dQ2. )] & [d(2n — 1] .

neNy
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Here [d(2, n)], respectively [d (2,/r-z\— 1)], is the representation of so(5) with highest
weight vector o W11 of weight (n + 1, 1), respectively " ~'Y1| of weight (n, 1); they
consist of derivations on O(SO (5, R)) which are combinations of the derivations in
(4.54) with polynomials coefficients of degree n in the generators of O(S%).

4.2.1 Braided derivations and infinitesimal gauge transformations

Let us now pass to the twisted Hopf—Galois extension

O(SH) = O(504(5, R))«OE%ER) = 0(S04(5, R)).

We briefly recall its construction from twist deformation (see [3, §4.1] for details).
Consider the 2-cocycle y : O(T?) ® O(T?) — C on O(T?) c O(SO4,R)),
given on the generators by y(fj ® ) = e i, y(ty ® t1) = ™% and
y(t1 ® 1) = y(t2 ® rp) = 1. Notice that here y = o2, where o is the cocycle used in
§4.1.5. We use it to deform the Hopf x-algebra O(S O (4, R)) into the noncommutative
Hopf x-algebra O(S Oy (4, R)). This latter has same coalgebra structure as the original
one but twisted algebra multiplication,

mpjeomgp =y (I @ Tx)myymgry (T; 1), I,J,K,L=1,...,4,

where T := diag(#1, 2, ti“, t;). (Here again, to conform with the literature we use the
subscript 6 instead of y for twisted algebras and their multiplications.) We set A

hy= (T @ T
sothat Ajy = exp(—2imOry). Since y(Ty @ T1) = y(ITL ® Ty), and y (1L ® TJ*) =
y(Ty, ® Ty) we have Aj; = rgl = Aryr. It follows that the generators in

O(S0¢ (4, R)) satisfy the commutation relations

mypjeemgyr = AjgkApymgreemyy, 1,J, K, L=1,...,4. (4.57)

The twisted antipode turns out to be equal to the starting one, Sg(my;) = S(myy).
The relations (4.43) become

M'eyQeeM = Q, MeyQesM' = Q , (4.58)

together with dety (M) = 1. The *-structure is as in (4.44).

Next, using the projection 7 in (4.48) we lift the 2-cocycle from O(SO (4, R)) to
O(S0O(5,R)) (or equivalently we consider the same torus T2 embedded in SO(5)).
The resulting Hopf *-algebra is denoted by O(S Oy (5, R)) and has generators n;y
with relations

nrjeongr = Aigiryngrenyy, I1,J,K,L=1,...,5, (4.59)
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where now T := diag(t1, 12, t{', t5, 1), and orthogonality conditions N "egQeyN = Q
and NeyQeyN' = Q, with detg(N) = 1. The %-structure is as in (4.47).

The quantum homogeneous space O(S*) is deformed into the quantum homoge-
neous space O(Sg) C O(S0¢(5,R)), consisting of coinvariants of O(SO0y (5, R))
under the O(S Oy (4, R))-coaction. This noncommutative x-subalgebra O(Sg ) is gen-
erated by fiveelements {u; = nys}r=1,..5 = {u;, uy = u;", X}i=1,2 with commutation
relations, obtained from (4.59),

UJeglh] = AJjUJegl] . (4.60)

The orthogonality conditions imply the sphere relation 2 le | UF el +x2 = 1. From
the general theory in [3], the algebra extension O(S, 4 O(S Op (5 R)) of the quantum
homogeneous space O(S ) =
O(S0y(5, R))OS 0 4R g gill Hopf-Galois.

When considering the braided Lie x-algebra of infinitesimal gauge transforma-
tions of this Hopf—Galois extension, it is useful to think of the latter as the result of
a double deformation done with commuting left coaction of O(T?) and right coac-
tion of O(T?) C O(SO(4,R)). This second O(T?) disappears when considering
O(S0O(4, R)) equivariant quantities. This is the case for the algebra O(S*) of coin-
variant elements. It is also the case for the equivariant derivations in Proposition 4.10
and it is in this sense that those derivations can be thought of as having trivial right
7*-grading (they do not move the second index in a generator n, g as already men-
tioned).

Thus for the braided Lie x-algebra of infinitesimal gauge transformations of the
Hopf-Galois extension (’)(Sg) = O(S0y(5, R))©OS0s(4.R) we just need to consider
the left torus action and the construction goes exactly as for the SU (2) instanton case
of the previous section. In particular we can repeat the construction in §4.1.5 verbatim
by considering the maximal torus T> C SO (5), generated by the right invariant vector
fields H; and H; of SO(5), and use the twist

F = gt 0HIOHM—ILOH) ¢ Kk & K « U(so(5)? @ U(so(5))°’ , 6 €R,
(4.61)

of K, where K is generated by the right invariant vector fields H; and H. Hence K is
the universal enveloping algebra of the Cartan subalgebra of so(5)°7, the Lie algebra
so(5) being that of left invariant vector fields on SO(5), cf. [5, §7.1]. The braided
Lie x-algebras of braided derivations and of infinitesimal gauge transformations of
the Hopf—Galois extension (’)(S;1 ) C O(S0g(5, R)) are the twist (left) deformations
of Der p1 (O(SO(S, R))) and of autp (54, (O(SO(S, R))) respectively (with the right
torus action playing no role).

As O(S*)-modules, the Lie algebra Der y1 (O(SO(5,R))), H = O(SO (4, R)),
is generated by the operators in (4.52) while the Lie algebra of infinitesimal gauge
transformations autos4) (O(S0O(5,R))) is generated by the operators in (4.54).
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From Corollary 3.11 Der u (O(S0g(5, R))) = D(Der \n (O(SO
(5, R))g), wherenow H = O(S0y(4, R)),and Dis anisomorphismof O(S Oy (5, R)))-
braided Lie and O(S Oy (5, R)))-module *-algebras. In parallel with Proposition 4.8,
we then have:

Proposition 4.14 The braided Lie *-algebra Der p.u(S0¢(5,R)) of equivariant
derivations of the O(SO0g(4, R))-Hopf~Galois extension (’)(Sé1 ) C OS0y(5,R))
is generated, as an (’)(Sg )-module, by elements

H;:=D(H;), E :=D(E), j=12, rel. (4.62)

As in (4.34) the bracket closes the braided Lie algebra soy(5),

[Hi, Halg, = 0; [ﬁj, Eflge = ”jEr ;

[Er, E_(Ip, = Z,- riH;; [Er, Eslr, = ¢ IS Ny E s
with Ny = 0 if r+s is not a root. The x-structure is ITI;N( = ﬁj and E; = E_r.
Corollary 3.11 also yields auto(sg)(O(SOQ B, R)) = D(auto(sg)(O(SO

(5, R))g). From Remark 4.11 the brackets among the generators D(K ;) and D(W,) of
auto(sg) ((’)(Sg)) and among those of auto(sg) (O(S0y(5, R))) have the same expres-
sion. This follows comparing the twist expressions (4.26) and (4.61) that define the
isomorphisms D. Nevertheless the braided Lie x-algebras auty, S;);)((’)(Sg7 )) and of

aut Sg)(O(S 0y (5, R))) are different because of the different (’)(S;1 )-module struc-
tures. Thus as in Proposition 4.9:

Proposition 4.15 The braided Lie x-algebra auto(sg)((’)(SOQ (5, R))) of infinitesi-

mal gauge transformations of the O(SOp(4, R))-Hopf-Galois extension (’)(S;1 ) C
O(S0y(5,R)) is generated, as an O(Sg)—module, by the elements

Kj:=D(K;), Wy:=DW,), j=12, reTl (4.63)
with brackets in Table 1 with the identifications @,x — \/Eul, o — ﬁuz,

x — x following from (4.39) and (4.50) (and up to a rescaling). The braided Lie
bracket of generic elements in auto(sg)((’)(S 0y (5, R))) is given by

[bes X, b/ os X Tr, = boy(Req 1> b )es[RE > X, X'Ip, (4.64)

for b, b € O(Sg) and i, X' in the linear span of the generators in (4.63). The
se-structure on the generators K j =K j» Wf = W_, is extended to the whole
aute st (SOp (5. R)) via the O(Sg)-module compaibility (3.21), (beo X)* = (R, >
b*)eg(REY > X*). It is compatible with the bracket, [ X"*, X*Ig: = ([X, X'Ir:)™".
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Appendix A. Decomposition of O (5%)

We study how O($*) decomposes in the sum of irreducible representations [d (s, 1)]
of so(5). In the algebra O(R’), both o and p? = aa* + BB* 4 x? are annihilated by all
raising operators W, (the ones for positive roots), and thus their powers and products.
They are of weight (1, 0) and (0, 0) respectively.

Let V) be the (4fr)—dimensional vector space of monomials of degree r in the
indeterminates «, o™, 8, B*, x. The vectors o T2 ,02" are highest weight vectors of
V® and

15

Vo = @[d(o, r —2k)] (4.65)

k=0

where [d(0,r — 2k)] is the irreducible representation with highest weight vector
a2 p2k of weight (r — 2k, 0), and of dimension d (0, r — 2k) = ¢ (1 +r —2k)(2 +
r —2k)(3 + 2r — 4k). Indeed, for r =2 m,

m . m _ l m 2 3

Zkzod(o, 2m — 2k) Zk:Od(o, 2m) = 1 Zk20(3 + 13k + 18k% + 8k%)
(m+1) (m+1D)(2m+1) 2(m+1)*

(3+13””"2 + 18 mentD@mt]) 4 g mm )

(m + 1)(6 + 19m + 16m* + 4m?),

1
-3
1
6
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442m

5™) of V@™ Similar computations go for r

which coincides with the dimension (
odd.

For «, o™, B, B*, x coordinate functions on O(SY), ,02 = 1 and with fixed r, all
representations [d] in the decomposition (4.65) already appeared in V" for some
r’ < r, but for [d(0, r)]. We hence conclude that

o) = @P1d©.n)]

neNg

where [d (0, n)] has highest weight vector a” of weight (n, 0).

Appendix B. Matrix representation of the braided Lie algebra sog(5)

We give a matrix representation of the braided Lie algebra sog (5) as defined in (4.34).
Consider weights u, v = (0, 0), (£1, 0), (0, &1) with order

(1,00=1, (0,1)=2, (-1,00 =3, (0,-1) =4, (0,0) =5.

Using this order for an identification between weights and row/column indices, define
matrices &, of components

(g;w)ar = Alt/\vauoavr
The product of two such matrices is found to be
guvgro = )\(M_U)A(T_U)(Surgp,a-

The minus signs in the exponents are due to &, having weight p — v (cf. (4.57)).

A direct computation shows the following:

Lemma 1 The matrices

Ki:=E&n—E Ko :=En — Ema
Kio := €15 — &3 K_10 := &1 — &35
Kii:=E&14 — &3 Koo =81 — &
Kot 1= &5 — Esa Ko—1 :=Es2 — &s5
Kic1 =& — &3 K1 =81 — Eua

give a matrix representation of the algebra sog(5) (see (4.34)) with the identification
Ky <> Ey and setting [K, Ks]ge 1= KiKs — A2 NSKGK, for the braided commutator of
matrices.
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Table2 Vertical vector fields on O(S7)

<1 22 23 24
K1 —xz1 + B*z4 xz2 + Bz3 —xz3 + Bz xz4 + Bz1
K> xz] +az3 —x7p —a*zy —xz3 +a*z) X74 —AaZ)

1 _ _ L _ 1 _ * 1
Wou il V20z) WL 7B V2a*z4 Wl

1 px N - T * _ 1 px 1 px,
Wo—1 ﬁﬂ Z] ﬁﬂ 2 — V2a%z ﬁﬂ 23 ﬁﬁ 24 — /2az3

__1 1 _ _ 1 * 1
Wio 5021 790 V2Bz Y3+ V2B*z4 N

I * L * L 1 *
W_10 Nokdhd! V2B*z) 7Y Vs Nokd 24 +/2Bz3
Wi oz4 Bz —2xzqatazp—pz1= 0

(I =2x)z4
W_i1-1 —B*z3 o*z3 0 —2xz3 +o¥z1 +
B2 = (1 —x)z3
Wit 0 2xz1 — B¥za +azz = Bz oz]
(1+x)z;
W_11 2xzp+Bz3+a*zg= 0 a*z) —Bz2
1+x)z

The matrices K, in the lemma are of the form
Kuy =& = Eppr ., for p4v=r. (4.66)

The braided commutator [K,, , Ky olge = Ky oKpo — AZHEIACTOIK K, is
found to be

[K,I,L,l)a KT,O’]RF - A(M+V)A(r+o)(8v*r Ku,a - (Sp,*rKv,cr - (SV*UKM,T + 60*;},Ku,r)-
(4.67)

In the classical limit, A = 1, the matrices &,,, reduce to the usual elementary matrices
and those in Lemma 1 give the defining matrix representation of the Lie algebra so(5).

The Lie x-algebra aut, 54, (O(S7))

In Table 2 we list the action of the generators (4.15) of the Lie algebra of infinitesimal
gauge transformations on the generators of the algebra O(S7).

We list in Table 3 half of the brackets of the generators (4.15) of the Lie algebra of
infinitesimal gauge transformations autos4) (O(S7)), obtained by direct computation.
The remaining brackets are obtained using the x-structure:

[Kj, Wil = [K}, W1 = —([K;, W:])",
[Wor, Wes] = [W, W'l = —([Wr, WsD)™,
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Table 3 The brackets of vertical derivations

(K1, K2l = v2(@*Wig — aW_10)

(K1, Woil = —v2BK, + 2x Wy (K2, Worl = V2(e*Wi1 +aW_11)
(K1, Wi—1]= —2xWi_| +V2B*Wig [K2, Wi_1]1=2xWi_| —V2aWy_|
(K1, Wiol = V2(=B*W11 + BWi_1) [K2, Wiol = 2xWjo — v2aK|

(K1, Wiil = 2xWi1 — V2BWio (K2, Wi1]l = 2xWi1 + V2 Wi

[Wor. Wi—11=~2BW1_1++2a(=K1+K2) [W_1_1, Wo11=v2BW_1_1 —v2a* (K1 +K2)
[Wor. Wigl = v2(BWip — aWp1) [W_i—1, Wi—1] = V2B*Wo_y

[Wor. Wil = v28Wi [W_i—1, Wiol = v2aW_i_| + v2B*(K| + K»)

[Wi—1, W0l = V22 W _;

[W_i—1. Wil = —2x(K| + K2) — V2(@W_10 + BWo—1)

(Wi—1, Wi1l = —v2a Wy [W_10, Wo11 = v2(BW_10 + a*Wo1)

[Wi0. Wi11 = v2a Wy [W_10, Wi—1] = —V2a*Wi_1 + V2B* (=K} + K2)
[Wio. W_10] = V2(B*Wo1 + BWo—1) [Wo—1. Woil = v2(@*Wig + aW_10)

(W_11, Worl = V2BW_1; (W_i1, Wi—i] = 2x(K| — Kp) — V2(B*Wo1 — aW_j)

with K;'.‘ = K; and W = W_, (see (4.16)) and (bX)" = b*X* foreach b € O
and X a derivation. For example, one computes

(K2, Wo—1] = —([K2, Wor])* = —v2(@*Wi_1 +aW_1_1)

[Wio, Wo—1] = —([W_10, Wo1 )* = —v2(B*Wio + aWo_1) .
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