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Abstract
We consider noncommutative principal bundles which are equivariant under a triangu-
lar Hopf algebra.We present explicit examples of infinite dimensional braided Lie and
Hopf algebras of infinitesimal gauge transformations of bundles on noncommutative
spheres. The braiding of these algebras is implemented by the triangular structure of the
symmetry Hopf algebra. We present a systematic analysis of compatible ∗-structures,
encompassing the quasitriangular case.
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1 Introduction

The gauge group of a principal bundle can be given as bundle automorphisms (dif-
feomorphisms of the total space onto itself which respect the group action) covering
the identity map on the base space. Elements of the gauge group act by pullback on
the space of connection one-forms on the bundle, thus playing a central role for the
definition of the moduli space of connections. In the dual algebraic language a princi-
pal bundle is given as an algebra extension B ⊆ A which is H -Hopf–Galois, for H a
Hopf algebra. A gauge transformation would then be given as an H -equivariant alge-
bra morphism of A onto itself which restricts to the identity on B. This dual definition
works well for the case of commutative algebras, and also for Hopf–Galois extensions
with H coquasitriangular and B commutative [4]. It is however too restrictive in gen-
eral, due to the scarcity of morphisms for a generic noncommutative algebra. Finding a
good notion of bundle automorphisms and gauge transformations for noncommutative
principal bundles is still an open problem.
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In our previous paper [5]we looked at the problem from the infinitesimal view-point
by considering algebra derivations, rather than algebra morphisms. We considered
derivations of algebras which are commutative up to a braiding. The derivations are
required to form a braided Lie algebra as well as a module over the algebra. Compati-
bility of these two structures is better understood in the context of triangular braidings.

We then studied the case of H -Hopf–Galois extensions which are equivariant under
a triangular Hopf algebra (K , R). Infinitesimal gauge transformations are now given
by H -comodule maps that are vertical braided derivations, with the brading imple-
mented by the triangular structure R of the symmetry K . These maps form a braided
Lie algebra autRB(A) and lead to a braided Hopf algebra U(autRB(A)) of infinitesimal
gauge transformations. The construction is shown to be compatible with the theory of
Drinfeld twists, and thus suitable for the study of noncommutative principal bundles
that are obtained via twist deformation (quantization) of classical ones. We refer to
[5] for details and for a discussion of different approaches and of the literature on the
subject.

In the present paper we complement the general theory developed in [5], and briefly
reviewed in § 2, with a systematic analysis of ∗-structures on braided Hopf algebras
associated with quasitriangular Hopf algebras. This is done in §3 where we also study
their compatibilitywith actions on∗-algebras. In the triangular casewe further consider
braided Lie ∗-algebras and their representations on ∗-algebras.

We then illustrate the general theory with the computation of the braided Lie
∗-algebras of infinitesimal gauge transformations of two important examples of non-
commutative principal bundles. These are given by two Hopf–Galois extensions of the
algebraO(S4θ ) of the noncommutative 4-sphere S4θ of [8] associated to an abelian twist.
Additional examples obtained from cotriangular quantum groups, and from abelian
as well as Jordanian twists are in [5, §7.1, §8.1]. In §4.1 we determine the braided Lie
∗-algebra autO(S4θ )(O(S7θ )) of infinitesimal gauge transformations of the O(SU (2))-

Hopf–Galois extensionO(S4θ ) ⊂ O(S7θ ) of [12]. This bundle can also be obtained as a
deformation by a twist onO(T2) of the Hopf–Galois extensionO(S4) ⊂ O(S7) of the
classical SU (2)-Hopf bundle [3]. This allows for the construction of autO(S4θ )(O(S7θ ))

from its classical counterpart, following the general theory. The explicit description
of the classical gauge Lie ∗-algebra autO(S4)(O(S7)) relies on the Spin(5) equiv-
ariance of the principal bundle S7 → S4. This equivariance also implies that, as
linear space, autO(S4)(O(S7)) splits as a direct sum over a class of representations of
the Lie ∗-algebra so(5), of vertical O(SU (2))-equivariant derivations, this is done in
§ 4.1.4. Following a similar procedure, in § 4.2 we compute the braided Lie ∗-algebra
of infinitesimal gauge transformations of the O(SOθ (4, R))-Hopf–Galois extension
O(S4θ ) ⊂ O(SOθ (5, R)) of the quantum homogeneous space O(S4θ ) [3, 14].

The braided Lie algebras of gauge transformations of these Hopf–Galois extensions
of O(S4θ ) are re-obtained in [6] via an intrinsic construction, which does not use the
twist procedure. They are further studied there in the context of Atiyah sequences of
braided Lie algebras, generalising the Atiyah sequence of a principal bundle.
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2 Braided Lie algebras of gauge transformations

The main objects investigated in this paper are K -equivariant Hopf–Galois exten-
sions, for (K , R) a triangular Hopf algebra, and their braided Lie algebras of gauge
symmetries. We briefly recall from [5] the main notions and results that are needed.

We work in the category of k-modules for k a commutative field, or the ring of
formal power series in an indeterminate and coefficients in a field. All algebras are
assumed to be unital and associative; morphisms of algebras preserve the unit. Dually
for coalgebras. We use standard terminologies and notations in Hopf algebra theory.
For H a bialgebra we also call H -equivariant a map of H -modules or H -comodules.

Recall that an algebra A is a right H -comodule algebra for a Hopf algebra H if it
carries a right coaction δ : A → A⊗ H which is a morphism of algebras. As usual we
write δ(a) = a(0) ⊗ a(1) in Sweedler notation with an implicit sum. Then the subspace
of coinvariants B := AcoH = {

b ∈ A | δ(b) = b ⊗ 1H
}
is a subalgebra of A. The

algebra extension B ⊆ A is called an H -Hopf–Galois extension if the canonical map

χ := (m ⊗ id) ◦ (id ⊗B δ) : A ⊗B A −→ A ⊗ H , a′ ⊗B a 
−→ a′a (0) ⊗ a (1)
(2.1)

is bijective. There may be additional requirements, such as faithful flatness of A as a
right B-module, to be mentioned when needed.

In the present paper we deal with H -Hopf–Galois extensions which are K -
equivariant for a Hopf algebra K . That is A carries also a left action � : K ⊗ A → A
that commutes with the right H -coaction, δ ◦ �= (� ⊗id) ◦ (id ⊗ δ) (the coaction δ

is a K -module map where H has trivial K -action). On elements k ∈ K , a ∈ A,

(k � a)(0) ⊗ (k � a)(1) = (k � a(0)) ⊗ a(1) . (2.2)

We further assume the Hopf algebra K to be quasitriangular. Recall that a bialgebra
(or Hopf algebra) K is quasitriangular if there exists an invertible element R ∈ K ⊗ K
(the universal R-matrix of K ) with respect to which the coproduct � of K is quasi-
cocommutative

�cop(k) = R�(k)R (2.3)

for each k ∈ K , with �cop := τ ◦ �, τ the flip map, and R ∈ K ⊗ K the inverse of R,
RR = RR = 1 ⊗ 1. Moreover R is required to satisfy,

(� ⊗ id)R = R13R23 and (id ⊗ �)R = R13R12. (2.4)

We write R := Rα ⊗ Rα with an implicit sum. Then R12 = Rα ⊗ Rα ⊗ 1, and similarly
for R23 and R13. From conditions (2.3) and (2.4) it follows that R satisfies the quantum
Yang–Baxter equation R12R13R23 = R23R13R12. The R-matrix of a quasitriangular
bialgebra (K , R) is unital: (ε ⊗ id)R = 1 = (id ⊗ ε)R, with ε the counit of K . When
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K is a Hopf algebra, quasitriangularity implies that its antipode S is invertible and
satisfies

(S ⊗ id)(R) = R ; (id ⊗ S)(R) = R ; (S ⊗ S)(R) = R . (2.5)

TheHopf algebra K is said to be triangularwhenR = R21,withR21 = τ(R) = Rα⊗Rα .

2.1 Braided Hopf algebras

We recall that a braided bialgebra associated with a quasitriangular Hopf algebra
(K , R) is a K -module (L,�L) which is both a K -module algebra (L,mL , ηL ,�L)

and a K -module coalgebra (L,�L , εL ,�L) and is a bialgebra in the braidedmonoidal
category of K -modules. That is, εL : L → k and �L : L → L � L are algebra maps
with respect to the product in L and the product in L ⊗ L defined by

(x ⊗ y) (x ′ ⊗ y′) := x
R(x
′ ⊗ y)y′ = x(Rα �L x ′) ⊗ (Rα �L y)y′ (2.6)

for x, y, x ′, y′ ∈ L and


R : L ⊗ L → L ⊗ L , 
R(x ⊗ y) = Rα �L y ⊗ Rα �L x (2.7)

the braiding. We denote L � L = (L ⊗ L, ). It is a K -module algebra with action

k �L�L (x � y) := (k(1) �L x) � (k(2) �L y). (2.8)

Such an L is a braided Hopf algebra if there is a K -module map SL : L → L , the
braided antipode, which satisfies

mL ◦ (idL ⊗ SL) ◦ �L = ηL ◦ εL = mL ◦ (SL ⊗ idL) ◦ �L . (2.9)

It turns out that SL is a braided algebra map:

SL(xy) = (Rα �L SL(y))(Rα �L SL(x)) (2.10)

and a braided coalgebra map:

�L ◦ SL(x) = SL(Rα �L x(2)) � SL(Rα �L x(1))

= Rα �L SL(x(2)) � Rα �L SL(x(1)) . (2.11)

(For 
R = τ the flip map, the previous conditions state that SL is an antialgebra and
anticoalgebra map.)

Due to the quasi-cocommutativity property (2.3), the action in (2.8) commutes with
the braiding:�L�L ◦
R = 
R◦ �L�L . More generally, given two K -modules V ,W
and braiding
R : V ⊗W → W ⊗V ,
R(v⊗w) = Rα �W w⊗Rα �V v, the actions
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of the coalgebra K on their tensor products satisfy k �W⊗V ◦
R = 
R ◦ k �V⊗W

for k ∈ K .

2.2 Braided Lie algebras of derivations

Westudyderivations of quasi-commutative algebras.Asmentioned in the introduction,
compatibility of the braided Lie algebra and the module structures works well in the
context of triangular braidings.

Herewe take (K , R) to be triangular, an assumptionwhich is enough for the purposes
of the present paper. A braided Lie algebra associated with a triangular Hopf algebra
(K , R), or simply a K -braided Lie algebra, is a K -module g with a bilinear map

[ , ] : g ⊗ g → g

that satisfies the following conditions:

(i) K -equivariance: for �(k) = k(1) ⊗ k(2) the coproduct of K ,

k � [u, v] = [k(1) � u, k(2) � v]

(ii) braided antisymmetry:

[u, v] = −[Rα � v, Rα � u],

(iii) braided Jacobi identity:

[u, [v,w]] = [[u, v], w] + [Rα � v, [Rα � u, w]],

for all u, v, w ∈ g, k ∈ K .

As shown in [5, §5.1], the universal enveloping algebra U(g) of a braided Lie
algebra g associated with (K , R) is a braided Hopf algebra. The coproduct of U(g) is
determined requiring the elements of g to be primitive, �(u) = u � 1+ 1� u, for all
u ∈ g.

Any K -module algebra A is a K -braided Lie algebra with bracket given by the
braided commutator

[ , ] : A ⊗ A → A, a ⊗ b 
→ [a, b] = ab − (Rα � b) (Rα � a) . (2.12)

(See [5, Lemma5.2].) In particular, if A is a K -module algebra, then also the K -module
algebra (Hom(A, A),�Hom(A,A)) of linear maps from A to A with action

�Hom(A,A): K ⊗ Hom(A, A) → Hom(A, A)

k ⊗ ψ 
→ k �Hom(A,A) ψ : A 
→ k(1) �A ψ(S(k(2)) � A)

(2.13)
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is a braided Lie algebra with the braided commutator; here S is the antipode of K .
Elements ψ in Hom(A, A) which satisfy

ψ(aa′) = ψ(a)a′ + (Rα � a) (Rα �Hom(A,A) ψ)(a′) (2.14)

for any a, a′ in A are called braided derivations. We denote DerR(A) the k-module
of braided derivations of A (to lighten notation we often drop the subscript R). It is a
K -submodule of Hom(A, A), with action given by the restriction of �Hom(A,A)

�Der(A): K ⊗ Der(A) → Der(A)

k ⊗ ψ 
→ k �Der(A) ψ : a 
→ k(1) � ψ(S(k(2)) � a) (2.15)

and moreover, see [5, Prop. 5.7], a braided Lie subalgebra of Hom(A, A) with

[ , ] :Der(A) ⊗ Der(A) → Der(A)

ψ ⊗ λ 
→ [ψ, λ] := ψ ◦ λ − (Rα �Der(A) λ) ◦ (Rα �Der(A) ψ). (2.16)

When the K -module algebra A is quasi-commutative, that is when

a a′ = (Rα � a′) (Rα � a) , (2.17)

for all a, a′ ∈ A, the braided Lie algebra Der(A) with

(aψ)(a′) := a ψ(a′), (2.18)

for ψ ∈ Hom(A, A), a, a′ ∈ A, is also a left A-submodule of Hom(A, A). The Lie
bracket of Der(A) satisfies ( [5, Prop. 5.8])

[
aψ, a′ψ ′] = aψ(a′)ψ ′ + a(Rα � a′)[Rα �Der(A) ψ,ψ ′]

−RβRα � a′(RδRγ �Der(A) ψ ′) (RδRβ � a) Rγ Rα �Der(A) ψ

(2.19)

for all a, a′ ∈ A, ψ,ψ ′ ∈ Der(A).

2.3 Infinitesimal gauge transformations

Let now B = AcoH ⊆ A be a K -equivariant Hopf–Galois extension, for (K , R)

a triangular Hopf algebra. Inside the braided Lie algebra Der(A) we consider the
subspace of braided derivations that are H -comodule maps,

DerRMH (A) = {u ∈ Der(A) | δ(u(a)) = u(a(0)) ⊗ a(1) , a ∈ A} (2.20)
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and then those derivations that are vertical,

autRB(A) := {u ∈ DerRMH (A) | u(b) = 0 , b ∈ B} . (2.21)

The linear spaces DerRMH (A) and autRB(A) are K -braided Lie subalgebras of Der(A),

[5, Prop. 7.2]. Elements of autRB(A) are regarded as infinitesimal gauge transformations
of the K -equivariant Hopf–Galois extension B = AcoH ⊆ A, [5, Def. 7.1]. There is
the corresponding braided Hopf algebra U(autRB(A)) of gauge transformations.

2.4 Twisting of braided Lie algebras

Important examples of noncommutative principal bundles come from twisting clas-
sical structures. Aiming at studying their braided Lie algebras of infinitesimal gauge
transformations, we need to first consider twist deformations of braided Lie algebras.

We recall some basic results of the theory of Drinfeld twists [9].

Let K be a bialgebra (or Hopf algebra). A twist for K is an invertible element
F ∈ K ⊗ K which is unital, (ε ⊗ id)(F) = 1 = (id ⊗ ε)(F), and satisfies the twist
condition

(F ⊗ 1)[(� ⊗ id)(F)] = (1 ⊗ F)[(id ⊗ �)(F)] . (2.22)

For F and its inverse F we write F = Fα ⊗ Fα and F =: Fα ⊗ Fα , with an implicit sum.
The R-matrix R of a quasitriangular bialgebra K is a twist for K .

When K has a twist it can be endowed with a second bialgebra structure which
is obtained by deforming its coproduct and leaving its counit and multiplication
unchanged. Moreover if K is triangular, or more in general quasitriangular, so is
the new bialgebra:

Proposition 2.1 Let F = Fα ⊗ Fα be a twist on a bialgebra (K ,m, η,�, ε). Then the
algebra (K ,m, η) with coproduct

�F(k) := F�(k)F = Fαk(1)F
β ⊗ Fαk(2)Fβ , k ∈ K (2.23)

and counit ε is a bialgebra. If in addition K is a Hopf algebra, then the twisted
bialgebra KF := (K ,m, η,�F, ε) is aHopf algebrawith antipode SF(k) := uFS(k)ūF,
where uF is the invertible element uF := FαS(Fα) with ūF = S(F

α
)Fα its inverse.

Finally, if (K , R) is a quasitriangular bialgebra (a Hopf algebra), such is the twisted
bialgebra (Hopf algebra) KF with R-matrix

RF := F21 R F = FαRβF
γ ⊗ FαRβFγ (2.24)

and inverse RF := F R F21 = FαR
β
Fγ ⊗FαRβF

γ
. If (K , R) is triangular, so is (KF, RF):

RF 21 = F R21 F21 = F R F21 = RF.
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Any K -module V with left action �V : K ⊗ V → V , is also a KF-module with
the same linear map �V , now thought as a map �V : KF ⊗ V → V . When thinking
of V as a KF-module we denote it by VF, with action �VF . Moreover, any K -module
morphism ψ : V → W can be thought of as a morphism ψF : VF → WF.

If A is a K -module algebra, with multiplication mA and unit ηA, in order for the
action �AF to be an algebra map one has to endow the KF-module AF with a new
algebra structure: the unit is unchanged, while the product is deformed to

mAF : AF ⊗F AF −→ AF , a ⊗F a
′ 
−→ a •F a′ := (F

α �A a) (Fα �A a′).
(2.25)

For any K -module algebra map ψ : A → A′, the KF-module map ψ : AF → A′
F is

an algebra map for the deformed products.

If C is a K -module coalgebra, the KF-module CF is a KF-module coalgebra with
counit εF = ε as linear map and coproduct

�F : CF → CF ⊗F CF , c 
→ �F(c) = Fα � c(1) ⊗F Fα � c(2) . (2.26)

The twist LF of a braided Hopf algebra L is obtained twisting L as a K -module algebra
and as a K -module coalgebra, cf. [5, Prop. 4.11].

We next recall that the action of a braided Hopf algebra (or just bialgebra) L on a
K -module algebra A is a K -equivariant action �A: L ⊗ A → A which satisfies

x �A (aa′) = (x(1) �A (Rα �A a)) ((Rα �L x(2)) �A a′) , (2.27)

for all a, a′ ∈ A. When twisting this leads to an action

�AF : LF ⊗F AF → AF , x �AF a = (F
α �L x) �A (Fα �A a) . (2.28)

When g is a braided Lie algebra associated with a triangular Hopf algebra (K , R), and
F is a twist for K , the KF-module gF inherits from g a twisted bracket ([5, Prop. 5.14]):

Proposition 2.2 The KF-module gF with bilinear map

[ , ]F = gF ⊗ gF → gF , u ⊗ v → [u, v]F := [Fα �g u, Fα �g v] (2.29)

is a braided Lie algebra associated with (KF, RF).

As a particular case of the above, consider the braided Lie algebra
(
Der(A), [ , ]),

for A a K -module algebra. It consists of the K -module of braided derivations of A to
itself, with action �Hom(A,A) as in (2.15), and bracket the braided commutator (2.16).
It is a braided Lie algebra associated with the triangular Hopf algebra (K , R).
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On the one hand, we obtain the braided Lie algebra (Der(A)F), [ , ]F) associated
with the triangular Hopf algebra (KF, RF). The KF-action �Der(A)F coincides with
�Der(A) as linear map. The Lie bracket is given by the braided commutator

[ψ, λ]F = ψ ◦F λ − (RFα �Der(A) λ) ◦F (RFα �Der(A) ψ) ,

with the composition (in fact in (Hom(A, A), ◦)) that is changed as in (2.25):

ψ ◦F φ = (F
α �Der(A) ψ) ◦ (Fα �Der(A) φ) . (2.30)

On the other hand, there is the braided Lie algebra Der(AF) of the KF-module AF
associated with (KF, RF). We use the notation �F(k) =: k[1] ⊗ k[2] for the coproduct
in KF to distinguish it from the original one �(k) = k(1) ⊗ k(2) in K . The KF-action is

�Der(AF): KF ⊗ Der(AF) → Der(AF)

k ⊗ ψ 
→ k �Der(AF) ψ : a 
→ h[1] �AF ψ(SF(h[2]) �AF a).

(2.31)

with bracket

[ψ, λ]RF = ψ ◦ λ − (RFα �Der(AF) λ) ◦ (RFα �Der(AF) ψ) .

These two braided Lie algebras are isomorphic [5, Thm. 5.19]:

Theorem 2.3 The braided Lie algebras (Der(A)F, [ , ]F) and (Der(AF), [ , ]RF) are
isomorphic via the map

D : Der(A)F → Der(AF), ψ 
→ D(ψ) : a 
→ (F
α �Der(A)F ψ)(Fα �A a) ,

(2.32)

which satisfies D([ψ, λ]F
) = [D(ψ),D(λ)]RF , for all ψ, λ ∈ Der(A)F. It has inverse

D−1 : Der(AF) → Der(A)F, ψ 
→ D−1(ψ) : a 
→ (Fα �Der(AF) ψ)(Fα �AF a) .

(2.33)

This isomorphism extends as algebra map to the universal enveloping algebras

D : U(Der(A)F) → U(Der(AF))

resulting into a braided Hopf algebra isomorphism. We further have the braided
Hopf algebras isomorphisms (see [5, Prop. 5.18]) U(Der(A))F � U(Der(A)F) �
U(Der(AF)).

Remark 2.4 As shown in [5], the isomorphism D : Der(A)F → Der(AF) is
the restriction of a more general isomorphism D : ((Hom(A, A)F, ◦F), [ , ]F) →
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((Hom(AF, AF), ◦), [ , ]RF). This result indeed holds in more generality for A just a
K -module and not necessarily a K -module algebra.

As mentioned, when A is quasi-commutative the K -braided Lie algebra Der(A)

has an A-module structure defined in (2.18) that is compatible with the Lie bracket of
Der(A).

The KF-braided Lie algebra Der(A)F has AF-module structure

a ·F ψ := (F
α �A a) (Fα �Der(A) ψ) , (2.34)

for all ψ ∈ Der(A)F and a ∈ AF. The compatibility of the braided bracket with this
module structure then, for all ψ,ψ ′ ∈ Der(A)F, a, a′ ∈ AF, reads

[a ·F ψ, a′ ·F ψ ′]F = a ·F [ψ, a′]F ·F ψ ′ + a ·F (RFα �AF a
′) ·F [RFα �Der(A)F ψ,ψ ′]F

− RFβRFα �AF a
′ ·F [RFδRFγ �Der(A)F ψ ′ , RFδRFβ �AF a]F ·F RFγ RFα �Der(A)F ψ .

(2.35)

Here an element in A is thought as a linear map A → A given by left multiplication.
Then [ψ, a]F = [Fα �Der(A) ψ, Fα �A a] = (F

α �Der(A) ψ)(Fα �A a).

Also the KF-braided Lie algebra Der(AF) has compatible AF-module structure.
With the product •F in (2.25) this is given as in (2.18) by

(a •F ψ)(a′) = a •F ψ(a′) (2.36)

for any a, a′ ∈ AF, ψ ∈ Der(AF).

The isomorphism D : Der(A)F → Der(AF) respects the AF-module structures:

Corollary 2.5 If the K -module algebra A is quasi-commutative, the braided Lie alge-
bra isomorphism D : (Der(A)F, [ , ]F) → (Der(AF), [ , ]RF) of Theorem 2.3 is also
an isomorphism of the AF-modules Der(A)F and Der(AF):

D(a ·F ψ) = a •FD(ψ),

for a ∈ AF and ψ ∈ Der(A)F.

Next, let B ⊆ A be a K -equivariant Hopf–Galois extension. We use the above
isomorphisms for the K -braided Lie algebra of derivations Der(A) and its braided
subalgebras DerRMH (A) and autRB(A) defined in (2.20) and in (2.21).

The K -braided Lie algebras (autRB(A), [ , ]) ⊆ (DerRMH (A), [ , ]) are twisted to

the KF-braided Lie algebras (autRB(A)F, [ , ]F) ⊆ (DerRMH (A)F, [ , ]F) with bracket
[ , ]F. These are braided Lie subalgebras of (Der(A)F, [ , ]F). We can equivalently
consider the KF-braided Lie algebras (autRFBF(AF), [ , ]RF) ⊆ (DerRFMHF

(AF), [ , ]RF)
that are braided Lie subalgebras of (Der(AF), [ , ]RF). These are isomorphic, [5, Prop.
8.1]:
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Proposition 2.6 The isomorphism D : (Der(A)F, [ , ]F)→ (Der(AF), [ , ]RF) of
braided Lie algebras in Theorem 2.3 restricts to isomorphisms D : DerRMH (A)F →
DerRFMHF

(AF) and D : autRB(A)F → autRFBF(AF) of (KF, RF)-braided Lie algebras.

In § 4wework out the braidedLie algebra of equivariant derivations and of infinites-
imal gauge transformations for two important examples of principal bundles over the
noncommutative 4-sphere S4θ of [8].Weuse the general theory developed in this section
to obtain the braided Lie algebra of equivariant derivations and of infinitesimal gauge
transformations of these noncommutative bundles from their classical counterparts.

These noncommutative principal bundles are ∗-algebra extensions (which can be
completed to C∗-algebras). The ∗-structures canonically lift to the Lie algebras of
braided derivations and of gauge transformations. Before considering these examples,
in the next section we proceed with a systematic analysis of ∗-structures for braided
Hopf and Lie algebras. The results of § 4 are however presented in a self contained
way so that § 3 might be skipped in a first reading.

3 Braided Hopf and Lie ∗-algebras

In this section the groundfield isk = C.We present a study of compatibility conditions
for defining ∗-structures on Hopf algebras and their representations. The study of
braided Hopf ∗-algebra actions on braided ∗-algebras associated with quasitriangular
Hopf algebras is new to the best of our knowledge.

A ∗-structure on a vector space V is an antilinear involution ∗ : V → V , v 
→ v∗,
on an algebra A one also requires ∗ : A → A to be antimultiplicative. A ∗-structure
on a Hopf algebra K is a ∗-structure on the algebra K that satisfies �(k∗) = �(k)∗⊗∗
for all k ∈ K ; it then follows that ε(k∗) = ε(k) and (S ◦ ∗)2 = id. In particular S is
invertible, with S−1 = ∗ ◦ S ◦ ∗. If V is a K -module with a ∗-structure, one requires
the compatibility condition

(k �V v)∗ = S−1(k∗) �V v∗ (3.1)

for all k ∈ K , v ∈ V . This condition is well defined: it is equivalent to require that
�V : K ⊗ V → V , defined by

k �V v := (S−1(k∗) �V v∗)∗, (3.2)

is an action of the Hopf algebra K on V that coincides with the starting one �V .
Indeed

k � (h � v) = k � (S−1(h∗) � v∗)∗ = (S−1(k∗)S−1(h∗) � v∗)∗ = kh � v.

(3.3)

The condition (3.1) is also required for A a K -module ∗-algebra. In this case (3.1) is
also well defined with respect to the multiplication in A. Indeed, k �L 1A = ε(k)1A
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and

(k(1) � a)(k(2) � b) = (
(S−1(k∗

(2)) � b∗)(S−1(k∗
(1)) � a∗)

)∗

= (
S−1(k∗) � (b∗a∗)

)∗ = k � (ab) (3.4)

for all k, h ∈ K , a, b ∈ A. Here and in the following to lighten the notations we
frequently omit the subscript on the actions.

Example 3.1 Any Hopf ∗-algebra K with adjoint action K ⊗ K → K , k � k′ =
k(1)k′S(k(2)) is a K -module ∗-algebra. This motivates the definition (3.1) following the
conventions in [10] rather than those in [13].

Example 3.2 Condition (3.1) is dual to that for a comodule ∗-algebra. Given a ∗-
algebra A which is a right comodule algebra for a Hopf ∗-algebra U , with coaction
δ : A → A⊗U , a 
→ a(0) ⊗a(1), one requires δ(a∗) = (a(0))

∗ ⊗ (a(1))
∗. If K and U are

dually paired Hopf ∗-algebras, one has 〈k, u∗〉 = 〈S−1(k∗), u〉. Then A is a module
∗-algebra with K -action k � a = a(0)〈k, a(1)〉 satisfying (3.1).

In the present paper we deal with braided Hopf and Lie algebras associated with a
(quasi)triangular Hopf algebra (K , R).

When K is quasitriangular we require its R-matrix to be antireal, that is, R∗⊗∗ = R.
When K is triangular this condition coincides with the reality condition R∗⊗∗ = R21.

3.1 Braided Hopf ∗-algebras

In this section we take (K , R) quasitriangular with R antireal. We use the braiding

R : L � L → L � L, 
R(x � y) = Rα �L y � Rα �L x , in (2.7) to induce the
∗-structure from a K -module ∗-algebra L to the K -module algebra L � L defined in
§2.1 (and to more general tensor products of K -module ∗-algebras).
Lemma 3.3 Given a K -module ∗-algebra L, the K -module algebra L�L with product
in (2.6) and involution (x � y)∗ = 
R(y∗ � x∗), that is,

(x � y)∗ = (Rα �L x∗) � (Rα �L y∗) , (3.5)

for x, y ∈ L, is a K -module ∗-algebra.

Proof The matrix R being antireal implies that (3.5) is an involution. It is antimul-
tiplicative: using (3.1) for �L together with antireality and properties (2.5) of the
R-matrix we compute (omitting the subscript on the actions)

(
(x � y) (x ′ � y′)

)∗ = (
x(Rα � x ′) � (Rα � y)y′)∗

= Rβ �
(
x(Rα � x ′)

)∗ � Rβ �
(
(Rα � y)y′)∗

= Rβ �
(
(Rα � x ′)∗x∗) � Rβ �

(
y′∗(Rα � y)∗

)
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= Rβ �
(
(Rα � x ′∗)x∗) � Rβ �

(
y′∗ Rα � y∗)

= (Rβ (1)
Rα � x ′∗)(Rβ (2)

� x∗) � (Rβ
(1) � y′∗)(Rβ

(2)R
α � y∗)

= (RβRτRα � x ′∗)(Rγ Rμ � x∗) � (Rγ Rβ � y′∗)(RμRτR
α � y∗)

= (Rβ � x ′∗)(Rγ Rμ � x∗) � (Rγ Rβ � y′∗)(Rμ � y∗)

= (
Rβ � x ′∗ � Rβ � y′∗) (

Rμ � x∗ � Rμ � y∗)

= (x ′ � y′)∗ (x � y)∗ .

Finally, we show the compatibility condition (3.1) between the ∗-structures. Recalling
that L � L has action (2.8), we compute

(k � (x � y))∗ = (k(1) � x � k(2) � y)∗

= Rα � (k(1) � x)∗ � Rα � (k(2) � y)∗

= RαS
−1(k∗

(1)) � x∗ � RαS−1(k∗
(2)) � y∗

= Rα(S−1(k∗))(2) � x∗ � Rα(S−1(k∗))(1) � y∗

= (S−1(k∗))(1)Rα � x∗ � (S−1(k∗))(2)R
α � y∗

= S−1(k∗) �
(
Rα � x∗ � Rα � y∗)

= S−1(k∗) �
(
x � y

)∗ (3.6)

where for the third last equality we used the quasi-cocommutative condition (2.3). ��

Considering the last and third expression in (3.6) one has

[
S−1(k∗) �

(
x � y

)∗]∗ =
[
RαS

−1(k∗
(1)) � x∗ � RαS−1(k∗

(2)) � y∗]∗

and, recalling the action (3.2), this reads k �L�L (x � y) = k(1) �L x � k(2) �L y.
This proves that �L�L is an action of the coalgebra K on L � L .

Lemma 3.4 The action �: K ⊗ L → L commutes with the braiding isomorphism

R : L � L → L � L, 
R(x � y) = Rα � y � Rα � x of the original K -action �,

k � (
R(x � y)) = 
R(k � (x � y)) , (3.7)

for all k ∈ K , x, y ∈ L.

Proof We first compute, using the antireality of the R-matrix,

(Rα � x)∗ � (Rα � y)∗ = S−1(Rα ∗
) � x∗ � S−1(Rα

∗) � y∗ (3.8)

= S−1(R
α
) � x∗ � S−1(Rα) � y∗ = R

α � x∗ � Rα � y∗,
(3.9)

123



Braided Hopf algebras and gauge transformations... Page 15 of 49    13 

for all x, y ∈ g. This and the ∗-structure of L � L in (3.5) prove the lemma:

k � (
R(x � y)) = k � (Rα � y � Rα � x)

= [S−1(k∗) � (Rα � y � Rα � x)∗]∗

= [S−1(k∗) � (Rβ � (Rα � y)∗ � Rβ � (Rα � x)∗)]∗

= [S−1(k∗
(2)) � y∗ � S−1(k∗

(1)) � x∗]∗

= Rα � (S−1(k∗
(2)) � y∗)∗ � Rα � (S−1(k∗

(1)) � x∗)∗

= Rα � (k(2) � y) � Rα � (k(1) � x)

= 
R(k(1) � x � k(2) � y) . ��

Definition 3.5 A ∗-structure on a braidedHopf algebra L associatedwith (K , R) is a ∗-
structure on the K -module algebra L such that the braided coproduct�L : L → L�L
is a ∗-algebra map, �L(x∗) = (�L(x))∗ with ∗-structure on L � L in (3.5).

The ∗-algebra map condition for �L is equivalent to �L = ∗ ◦ �L ◦ ∗. This is
well defined since ∗ ◦ �L ◦ ∗ : L → L � L is a coassociative K -module map and
an algebra map. The K -equivariance follows from that of �L and the compatibility
(3.1). The ∗-algebra map property is straighforward and coassociativity is verified by
direct computation.

The (braided) antipode SL of a braided Hopf ∗-algebra satisfies SL ◦∗◦ SL ◦∗ = id
and so is invertible. Using (2.11), �L ◦ SL = (SL ⊗ SL) ◦ 
R ◦ �L , one gets:

�L ◦ S−1
L = (S−1

L ⊗ S−1
L ) ◦ 
R ◦ �L

with 
R the inverse of 
R: 
R(x ⊗ y) = R
α �L y ⊗ Rα �L x , for x, y ∈ L . Then,

using (3.5), one gets

�L(SL(x∗)) = RαRβ � SL((x(2))
∗) � RαRβ � SL((x(1))

∗) ,

for each x ∈ L , together with

�L(S−1
L (x∗)) = S−1

L ((x(2))
∗) � S−1

L ((x(1))
∗) . (3.10)

AbraidedHopf∗-algebra L acts on a K -module∗-algebra A,with action�A: L⊗A →
A satisfying (2.27), if the ∗-structure of A satisfies the compatibility condition

(x �A a)∗ = (R
α �L S−1(x∗)) �A (Rα �A a∗) (3.11)

that generalizes condition (3.1).

Proposition 3.6 The compatibility condition (3.11) is well-defined.
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Proof The compatibility condition is equivalent to require that

x �A a :=
[
(R

α �L S−1(x∗)) �A (Rα �A a∗)
]∗

is an action of the braidedHopf algebra L on the K -module algebra A, which coincides
with the starting action �A. We need to show that the map � defines a K -equivariant
action that satisfies (2.27). To lighten the notation we omit the subscript on the actions.
Firstly, � is an action. The condition x � 1A = εL(x)1A follows from the unitality
of R. Observing that the compatibility of the inverse antipode with the multiplication
uses the inverse braiding, S−1

L (xy) = (R
α �L S−1

L (y))(Rα �L S−1
L (x)), cf. (2.10),

we compute

(xy) � v =
[
(R

α � S−1((xy)∗)) � (Rα � v∗)
]∗

=
[(

R
α � ((R

γ � S−1(x∗))(Rγ � S−1(y∗))
)

� (Rα � v∗)
]∗

=
[(

(R
α

(1)R
γ � S−1(x∗))(Rα

(2)Rγ � S−1(y∗))
)

� (Rα � v∗)
]∗

=
[(

(R
β
R

γ � S−1(x∗))(Rα
Rγ � S−1(y∗))

)
� (RαRβ � v∗)

]∗
.

For the last equality we used the analogous of property (2.4) for R. On the other hand

x � (y � v) = x �
[
(R

α � S−1(y∗)) � (Rα � v∗)
]∗

=
[
(R

β � S−1(x∗)) �
(
Rβ �

[
(R

α � S−1(y∗)) � (Rα � v∗)
])]∗

=
[
(R

β � S−1(x∗))(Rβ (1)
R

α � S−1(y∗)) � (Rβ (2)
Rα � v∗)

]∗

=
[
(R

β
R

γ � S−1(x∗))(RβR
α � S−1(y∗)) � (Rγ Rα � v∗)

]∗
,

havingusedproperty (2.4) again. The twoexpressions then coincide due to the quantum
Yang–Baxter equation R12R13R23 = R23R13R12. Next we show K -equivariance:

k � (x � v) = k �
[
(R

α � S−1(x∗)) � (Rα � v∗)
]∗

=
[
S−1(k∗) �

[
(R

α � S−1(x∗)) � (Rα � v∗)
]]∗

=
[(

(S−1(k∗)(1)R
α
) � S−1(x∗)

)
�

(
(S−1(k∗)(2)Rα) � v∗)]∗

=
[(
R

α
S−1(k∗)(2) � S−1(x∗)

)
�

(
RαS

−1(k∗)(1) � v∗)]∗

=
[(
R

α
S−1(k∗

(1)) � S−1(x∗)
)

�
(
RαS

−1(k∗
(2)) � v∗)]∗

=
[
(R

α � S−1(S−1(k∗
(1)) � x∗)) � (RαS

−1(k∗
(2)) � v∗)

]∗
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=
[
(R

α � S−1((k(1) � x)∗)) � (Rα � (k(2) � v)∗)
]∗

= (k(1) � x) � (k(2) � v)

where for the fourth equality we used the co-commutativity (2.3) of the coproduct of
K and for the sixth equality the K -equivariance of the braided antipode S of L .

We are left to show that (2.27) holds: using the same property for the action � and
property (3.10) for the inverse of the braided antipode, we compute

x � (aa′) =
[
(R

α � S−1(x∗)) �
(
(Rα(1) � a′∗)(Rα(2) � a∗)

)]∗

=
[[

(R
α � S−1(x∗)

)
(1)

� (Rγ Rα(1) � a′∗)
]

× [(
Rγ �

(
R

α � S−1(x∗)
)

(2)

)
� (Rα(2) � a∗)

]]∗

= [(
Rγ �

(
R

α
R

μ � S−1(x∗)
)

(2)

)
� (Rμ � a∗)

]∗

× [(
R

α
R

μ � S−1(x∗)
)

(1)
� (Rγ Rα � a′∗)

]∗

= [(
Rγ R

α
(2)R

μ
(2) � S−1(x(1)

∗)
)

� (Rμ � a∗)
)]∗

× [
(R

α
(1)R

μ
(1) � S−1(x(2)

∗)) � (Rγ Rα � a′∗)
]∗

= [
(Rγ R

α
R

μ � S−1(x(1)
∗)) � (RμRτ � a∗)

)]∗

× [
(R

ν
R

τ � S−1(x(2)
∗)) � (Rγ RαRν � a′∗)

]∗

= [
(R

μ � S−1(x(1)
∗)) � (RμRτ � a∗)

)]∗

× [
(R

ν
R

τ � S−1(x(2)
∗)) � (Rν � a′∗)

]∗

On the other hand, also using the antireality of R,

(x(1) � (Rα � a)) ((Rα � x(2)) � a′) =
[
(R

μ � S−1(x(1)
∗)) � (Rμ � (Rα � a)∗

]∗

×
[
(R

ν � S−1((Rα � x(2))
∗)) � (Rν � a′∗)

]∗

=
[
(R

μ � S−1(x(1)
∗)) � (RμRα � a∗]∗ [

(R
ν � S−1(R

α � x(2)
∗)) � (Rν � a′∗)

]∗

and the two expressions coincide due to K -equivariance of the braided antipode. ��

3.2 Braided Lie ∗-algebras

In this section (K , R) is triangular, with R∗⊗∗ = R21 = R.

Definition 3.7 A ∗-structure on a K -braided Lie algebra g is an antilinear involution
∗ : g → g which satisfies (3.1) and in addition ([u, v])∗ = [v∗, u∗] for all u, v ∈ g.
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The compatibility condition (3.1) is well-defined because it is equivalent to require
that the K -action �g: K ⊗ g → g in (3.2), with (A, ·) replaced by (g, [ , ]), is an
action of K on the braided Lie algebra g, which coincides with the starting action �g.
The proof that �g: K ⊗ g → g is an action on the K -module g is as in (3.1). The
K -equivariance property of the bracket, k �g [u, v] = [k(1) �g u, k(2) �g v] for all
k ∈ K , that is, k �g ◦ [ , ] = [ , ] ◦ k �g as maps g ⊗ g → g, is as in (3.4).

The compatibility of the action�g with the braided antisymmetry [ , ] = −[ , ]◦
R
is due to K -equivariance of the braiding 
R, see (3.7). Similarly, the compatibility
of the action �g with the braided Jacobi identity (which is an equality between maps
obtained from the bracket and the braiding) is due to K -equivariance of all the maps
involved.

In the present paper the main example of K -braided Lie ∗-algebra is that of braided
derivations Der(A) of a K -module ∗-algebra A. Its ∗-structure is defined by

ψ∗(a) := −
(
(R

α �Der(A) ψ)(Rα �A a∗)
)∗

, (3.12)

for all ψ ∈ Der(A), a ∈ A. It lifts as an antilinear and antimultiplicative map to
a ∗-structure on the universal enveloping algebra L = U(Der(A)). This ∗-structure
is compatible with the braided action �A: U(Der(A)) ⊗ A → A defined by ψ �A

a = ψ(a) for all ψ ∈ Der(A) ⊆ U(Der(A)), a ∈ A. Since Der(A) is the K -
submodule of primitive elements, S−1(ψ) = −ψ and (3.12) also reads ψ∗(a) =(
(R

α �L S−1(ψ))(Rα �A a∗)
)∗
. This implies the compatibility:

x∗ �A a =
(
(R

α �L S−1
L (x)) �A (Rα �A a∗)

)∗
. (3.13)

This is the unique ∗-structure compatible with �A, indeed (3.11) is equivalent to
(3.13).

If the K -module ∗-algebra A is quasi-commutative, see (2.17), the K -braided Lie
∗-algebra Der(A) is also a left A-module with action · : A ⊗Der(A) → A defined in
(2.18). This is compatible with the ∗-structure: on A⊗Der(A)we have the ∗-structure
(a ⊗ ψ)∗ = (Rα � a∗) ⊗ (Rα � ψ∗) (cf. Lemma 3.3), then

(a · ψ)∗ = (Rα � a∗) · (Rα � ψ∗)

for all a ∈ A, ψ ∈ Der(A), that is, ∗ ◦ · = · ◦ ∗ as maps A ⊗ Der(A) → Der(A).
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3.3 Twists and ∗-structures

3.3.1 Twist of Hopf ∗-algebras and their representations

A twist F of a Hopf ∗-algebra K is a twist of the Hopf algebra K that satisfies

F∗⊗∗ = (S ⊗ S)F21 . (3.14)

Then KF is a Hopf ∗-algebra with

∗F : KF → KF , k∗F := u k∗ū (3.15)

where u = FαS(Fα) and ū = S(F̄
α
)F̄α is its inverse. From (3.14) we have u∗ = u,

which implies that ∗F is involutive. The twist condition (2.22) implies the identity
F�(u) = uS(F β (2)

) ⊗ Fβ S(F β (1)
) or equivalently

F�(u) = (u ⊗ u)F̄
∗⊗∗

. (3.16)

Compatibility with the coproduct then follows: �F(k∗F) = �F(k)∗F⊗∗F for all k ∈ K .

If A is a K -module ∗-algebra, AF is a KF-module ∗-algebra with ∗ : AF → AF that
is the same as the initial ∗ as antilinear map. Indeed this is antimultiplicative:

(a ·F b)∗ = (Fα � b)∗(Fα � a)∗ = S−1(Fα
∗
) � b∗ S−1(F

α∗
) � a∗

= F
α � b∗ Fα � a∗ = b∗ ·F a∗, (3.17)

where we used (3.1) and (3.14). Moreover it is compatible with the KF-action,

(k � a)∗ = (S(k))∗ � a∗ = (SF(k))
∗F � a∗ = S−1

F (k∗F) � a∗, (3.18)

where we used (SF(k))∗F = (uS(k)ū)∗F = (S(k))∗ which holds since u∗ = u.

3.3.2 Twist of quasitriangular and braided Hopf ∗-algebras, and of their
representations

If (K , R, ∗) is a quasitriangular Hopf ∗-algebra with R antireal, so is (KF, RF, ∗F)
with RF antireal. From (3.15), (3.16) and the equivalent expression F∗⊗∗

21 (ū ⊗ ū) =
�cop(ū)F21, we compute

R∗F⊗∗F
F = (u ⊗ u)(F21RF)∗⊗∗(ū ⊗ ū) = F�(u)R∗⊗∗�cop(ū)F21

= F�(u)R�cop(ū)F21 = FR F21 = RF

where we used the quasi-cocommutativity property (2.3).
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For a K -module algebra L one has the KF-module algebra isomorphism

ϕ : LF �F LF → (L � L)F , x �F y 
→ ϕ(x �F y) := F
α � x � Fα � y

(3.19)

(leading to the monoidal equivalence of the categories of K -module algebras and KF-
module algebras). When L is a K -module ∗-algebra so is L � L while LF, (L � L)F
and LF �F LF are KF-module ∗-algebras. This latter with ∗-structure (cf. Lemma 3.3)

(x �F y)
∗F = 
RF(y

∗ � x∗) = (RFα � x∗) � (RFα � y∗) .

Lemma 3.8 Let (K , R, ∗) be a quasitriangular Hopf ∗-algebra, with twist F and L
a K-module ∗-algebra. The isomorphism ϕ : LF �F LF → (L � L)F in (3.19) is a
KF-module ∗-algebra isomorphism.

Proof We show ϕ−1 ◦ ∗ ◦ ϕ = ∗F. Using the compatibility condition (3.1), (3.14) and
RF = F21RF we have, for all x, y ∈ L ,

ϕ−1((ϕ(x �F y))
∗) = ϕ−1((F

γ � x � Fγ � y)∗)
= FαRβ � (F

γ � x)∗ �F FαRβ � (Fγ � y)∗

= FαRβ S
−1(F

γ ∗
) � x∗ �F FαRβ S−1(F

∗
γ ) � y∗

= FαRβFγ � x∗ �F FαRβF
γ � y∗

= RFβ � x∗ �F RFβ � y∗ = (x �F y)
∗F .

��

Theorem 3.9 (LF, RF, ∗) is a KF-braided Hopf ∗-algebra with ∗-structure that, as an
antilinear involution, is the same as that of (L, R, ∗).

Proof We already know that (LF, RF) is a KF-braided Hopf algebra, we prove the
compatibility with ∗. From (3.18) we see that (LF, ∗) is a KF-module ∗-algebra.
Moreover the braided coproduct �LF is a ∗-algebra map: �LF(x

∗) = (�LF(x))
∗F , for

all x ∈ LF. Indeed from (2.26) we have �LF ◦ ∗ = ϕ−1 ◦ �L ◦ ∗ = ϕ−1 ◦ ∗ ◦ �L =
ϕ−1 ◦ ∗ ◦ ϕ ◦ �LF = ∗F ◦ �LF . Thus (LF, RF, ∗) is a KF-braided Hopf ∗-algebra
according to Definition 3.5. ��

If a K -braided Hopf ∗-algebra L acts on a K -module ∗-algebra A then the twisted
KF-braidedHopf ∗-algebra LF acts on the twisted KF-module ∗-algebra AF with action

�AF : LF ⊗F AF → AF , x �AF a = (F
α �LF x) �A (Fα �AF a) .
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The compatibility of the ∗-structure of AF with the braided action �AF of LF reads

(x �AF a)∗ = (RF
β �LF S−1

LF
(x∗)) �AF (RFβ �AF a), cf. (3.11). This follows from

S−1
L ((k � x)∗) = S−1

L (S−1(k∗) � x∗) = S−1(k∗) � S−1
L (x∗), for k ∈ K , x ∈ L ,

owing to the K -equivariance of the braided antipode SL .

3.3.3 Twist of braided Lie ∗-algebras of derivations and gauge transformations

Let (K , R) be triangular. If g is a K -module Lie ∗-algebra then gF is a KF-module Lie
∗-algebra with the initial involution of g. The property ([u, v]F)∗ = [v∗, u∗]F for all
u, v ∈ gF is proven along the same lines of those in (3.17).

We now consider the K -braided Lie ∗-algebra g = Der(A) of derivations of the
K -module ∗-algebra A, with ∗-structure defined in (3.12) and its universal enveloping
∗-algebra L = U(Der(A)). Similarly we have the KF-braided Lie ∗-algebra Der(AF),
of derivations of the KF-module ∗-algebra AF, with ∗-structure ∗̃ := ∗Der(AF)

, defined
as in (3.12),

ψ ∗̃(a) := −
(
(RF

α �Der(AF) ψ)(RFα �AF a
∗)

)∗
(3.20)

for all ψ ∈ Der(AF), a ∈ AF. The associated universal enveloping ∗-algebra is
U(Der(AF)).

Proposition 3.10 The isomorphism D : Der(A)F → Der(AF) of KF-braided Lie
algebras of Theorem 2.3 is a KF-braided Lie ∗-algebra isomorphism. It lifts to the
isomorphism D : U(Der(A)F) → U(Der(AF)) of KF-braided Hopf ∗-algebras.

Proof We have to show D(ψ∗)(a) = D(ψ)∗̃(a) for all ψ ∈ Der(A)F, a ∈ AF. In
analogy with (3.17) we have (F

α � a)∗ ⊗ (Fα � ψ)∗ = (Fα � a∗) ⊗ (F
α � ψ∗) and

therefore,

D(ψ∗)(a) = (F
α �L ψ∗)(Fα � a) = (Fα �L ψ)∗(Fα � a∗)∗

= [(Rβ �L S−1
L (Fα �L ψ))(RβF

α � a∗)]∗
= [(RβFα �L S−1

L (ψ))(RβF
α � a∗)]∗

where we used (3.12) with S(ψ) = −ψ (or (3.13)) and K -equivariance of the braided
antipode SL . On the other hand, by definition of the ∗-structure on Der(AF) we have

D(ψ)∗̃(a) = [(RFβ �LF S−1
LF

(D(ψ)))(R β
F � a∗)]∗

= [(RFβ �LF D(S−1
L (ψ)))(R β

F � a∗)]∗
= [(D(RFβ �L S−1

L (ψ)))(R β
F � a∗)]∗

= [((Fα
RFβ �L S−1

L (ψ)))(FαR
β
F � a∗)]∗ .

The proof then follows from RF = F21RF−1.
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The isomorphism D : U(Der(A)F) → U(Der(AF)) of KF-braided Hopf algebras
commutes with the ∗-structures when restricted to the primitive elements Der(A)F
and, since these are the generators, on all elements of U(Der(A)F). The proof is by
induction. If x, y ∈ U(Der(A)F) satisfy D(x∗) = D(x)∗̃, D(y∗) = D(y)∗̃, then so
does their product,D((x ·F y)∗) = D(y∗ ·F x∗) = D(y∗) •FD(x∗) = D(y)∗̃ •FD(x)∗̃ =
(D(x) •FD(y))∗̃ = (D(x ·F y))∗̃. ��

Finally, for A a quasi-commutative K -module ∗-algebra, Der(A) is a K -braided Lie
and A-module ∗-algebra. The twisted algebra AF is a KF-braided quasi-commutative
∗-algebra and Der(AF) a KF-braided Lie and AF-module ∗-algebra. In particular,

([ψ, η]RF)∗̃ = [η∗̃, ψ ∗̃]RF , (a •F ψ)∗̃ = (RFα � a∗) •F (RFα �Der(AF) ψ ∗̃).
(3.21)

From Theorem 2.3, Corollary 2.5 and Proposition 3.10, D : Der(A)F → Der(AF) is
an isomorphism of KF-braided Lie and AF-module ∗-algebras. As in Theorem 2.6, for
a Hopf–Galois extension this isomorphism restricts to equivariant derivations and to
infinitesimal gauge transformations:

Corollary 3.11 For B = AcoH ⊆ A a (K , R)-equivariant Hopf–Galois exten-
sion with A a quasi-commutative H-comodule ∗-algebra, the isomorphism D :
Der(A)F →Der(AF) of (KF, rF)-braided Lie and AF-module ∗-algebras restricts to
isomorphisms

D : DerRMH (A)F →DerRFMHF
(AF) , D : autRB(A)F → autRFBF(AF)

of (KF, RF)-braided Lie and BF-module ∗-algebras.

4 Principal bundles over S4� and their gauge transformations

In this section we consider the twist deformation of the Hopf SU (2)-bundle over the
4-sphere S4θ , and then of the SO(4)-bundle over S4θ , seen as a homogeneous space.

4.1 The instanton bundle

The H = O(SU (2)) Hopf–Galois extension O(S4θ ) ⊂ O(S7θ ) of [12] can be
obtained as a deformation by a twist on K = O(T2) of the Hopf–Galois exten-
sion O(S4) ⊂ O(S7) of the classical SU (2) Hopf bundle, [3]. We use that twist
deformation in the framework of the theory developed in § 2.4, to obtain the braided
Lie algebras DerMH (O(S7θ )) and autO(S4θ )(O(S7θ )) from their classical counterparts

DerMH (O(S7)) and autO(S4)(O(S7)).
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4.1.1 The classical Hopf bundle

Let us start with theHopf–Galois extension B ⊂ A of the classical SU (2)-Hopf bundle
π : S7 → S4. The algebra A := O(S7) is the commutative ∗-algebra of coordinate
functions on the 7-sphere S7 with generators {za, z∗a , a = 1, . . . , 4}, satisfying the
sphere relation

∑
z∗aza = 1. It carries a right coation of the Hopf algebra O(SU (2))

of coordinate functions on SU (2). This is the ∗-algebra generated by commuting
elements {w j , w

∗
j , j = 1, 2}, with ∑

w∗
jw j = 1, and standard Hopf algebra structure

induced from the group structure of SU (2). The right coaction δ : O(S7) −→ O(S7)⊗
O(SU (2)) is defined on the algebra generators as

u 
−→ u
.⊗ w , u :=

(
z1 z2 z3 z4

−z∗2 z∗1 −z∗4 z∗3

)t

, w :=
(

w1 −w∗
2

w2 w∗
1

)
. (4.1)

Here
.⊗ denotes the composition of the tensor product ⊗ with matrix multiplication.

As usual the coaction is extended to the whole O(S7) as a ∗-algebra morphism.

The ∗-subalgebra B = O(S7)coO(SU (2)) of coinvariant elements for the coaction
is identified with the ∗-algebra O(S4) of coordinate functions on the 4-sphere S4. As
the algebraic counterpart of the principality of the Hopf bundle π : S7 → S4, one
has that the algebra O(S7) is a (not trivial) faithfully flat Hopf–Galois extension of
O(S4).

A set of generators for the algebra B is given by the elements

α := 2(z1z
∗
3 + z∗2z4) , β := 2(z2z

∗
3 − z∗1z4) , x := z1z

∗
1 + z2z

∗
2 − z3z

∗
3 − z4z

∗
4

(4.2)

and their ∗-conjugated α∗, β∗, with x∗ = x . From the 7-sphere relation
∑

z∗μzμ = 1,
it follows that they satisfy a 4-sphere relation α∗α + β∗β + x2 = 1.

For future use we also note these generators satisfy the relations

(1 − x)z1 = αz3 − β∗z4 (1 − x)z2 = α∗z4 + βz3
(1 + x)z3 = α∗z1 + β∗z2 (1 + x)z4 = αz2 − βz1 (4.3)

together with their ∗-conjugated.

4.1.2 The equivariant derivations

Since the sphere S7 and S4 are the homogeneous spaces S7 = Spin(5)/SU (2) and
S4 = Spin(5)/Spin(4) � Spin(5)/SU (2) × SU (2), the Hopf fibration S7 → S4 is
a Spin(5)-equivariant SU (2)-principal bundle. Then, the right-invariant vector fields
X ∈ so(5) � spin(5) on Spin(5) project to the right cosets S7 and S4 and generate
the O(S7)-module of vector fields on S7 and the O(S4)-module of those on S4. A
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convenient generating set for theO(S7)-module is given by the following right SU (2)-
invariant vector fields on S7 (cf. [11]):

H1 = 1
2 (z1∂1 − z∗1∂∗

1 − z2∂2 + z∗2∂∗
2 − z3∂3 + z∗3∂∗

3 + z4∂4 − z∗4∂∗
4 )

H2 = 1
2 (−z1∂1 + z∗1∂∗

1 + z2∂2 − z∗2∂∗
2 − z3∂3 + z∗3∂∗

3 + z4∂4 − z∗4∂∗
4 ) (4.4)

E10 = 1√
2
(z1∂3 − z∗3∂∗

1 − z4∂2 + z∗2∂∗
4 ) E−10 = 1√

2
(z3∂1 − z∗1∂∗

3 − z2∂4 + z∗4∂∗
2 )

E01 = 1√
2
(z2∂3 − z∗3∂∗

2 + z4∂1 − z∗1∂∗
4 ) E0−1 = 1√

2
(z1∂4 − z∗4∂∗

1 + z3∂2 − z∗2∂∗
3 )

E11 = −z4∂3 + z∗3∂∗
4 E−1−1 = z∗4∂∗

3 − z3∂4
E1−1 = −z1∂2 + z∗2∂∗

1 E−11 = −z2∂1 + z∗1∂∗
2 .

(4.5)

Here the partial derivatives ∂a, ∂
∗
a , are defined by ∂a(zc) = δac and ∂a(z∗c ) = 0 and

similarly for ∂∗
a , a, c = 1, 2, 3, 4. The vector fields above are chosen so that their

commutators close the Lie ∗-algebra so(5) in the form

[H1, H2] = 0 ; [Hj , Er] = r j Er ;
[Er, E−r] = r1H1 + r2H2 ; [Er, Es] = Nrs Er+s . (4.6)

The elements H1, H2 are the generators of the Cartan subalgebra, and Er is labelled
by

r = (r1, r2) ∈ � = {(±1, 0), (0,±1), (±1,±1)} ,

one of the eight roots. Also, Nrs = 0 if r+s is not a root and Nrs ∈ {1,−1} otherwise.
The ∗-structure is given by

H∗
j = Hj , E∗

r = E−r. (4.7)

The ∗-structure on vector fields X is defined by X∗( f ) = (S(X)( f ∗))∗ = −(X( f ∗))∗
for any function f , and one accordingly checks that for the vector fields in (4.4) and
(4.5), E−r(za) = −(Er(z∗a))∗ and Hj (za) = −(Hj (z∗a))∗.

The vector fields (4.4) and (4.5), being invariant under the action of SU (2), projects
to a generating set for the O(S4)-module of vector fields on S4. Explicitly one finds,

Hπ
1 = α∂α − α∗∂α∗ Hπ

2 = β∂β − β∗∂β∗

Eπ
10 = 1√

2
(2x∂α∗ − α∂x ) Eπ−10 = 1√

2
(−2x∂α + α∗∂x )

Eπ
11 = β∂α∗ − α∂β∗ Eπ−1−1 = −β∗∂α + α∗∂β

Eπ
01 = 1√

2
(2x∂β∗ − β∂x ) Eπ

0−1 = 1√
2
(−2x∂β + β∗∂x )

Eπ
1−1 = β∗∂α∗ − α∂β Eπ−11 = −β∂α + α∗∂β∗ (4.8)

using analogous partial derivatives onO(S4). Indeed theO(S4)-module of vector fields
on S4 can be generated by the five elements Hμ = ∂μ∗ − xμD, for D = ∑

μ xμ∂μ the
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Liouville vector field. The five weights μ are those of the representation [5] of so(5)
with

x00 = x , x10 = 1√
2
α , x−10 = 1√

2
α∗ , x01 = 1√

2
β , x0−1 = 1√

2
β∗

and sphere relation
∑

μ x∗
μxμ = 1. The commutators [Hμ, Hν] give the generators in

(4.8).

Dually, the vector fields (4.4) and (4.5) are H = O(SU (2))-equivariant derivations
and generate the O(S4)-module of such derivations

DerMH (O(S7)) = {X ∈ Der(O(S7)) | δ ◦ X = (X ⊗ id) ◦ δ}. (4.9)

The general H -equivariant derivation is then of the form

X = b1H1 + b2H2 +
∑

r
brEr (4.10)

for generic elements b j , br ∈ O(S4). These derivations are real, that is X∗ = X , if
and only if b∗

j = b j and b∗
r = b−r. On the generators of O(S7) the derivation X is

given as

X : O(S7) → O(S7) ,
(
z1 z2 z3 z4

)t 
→ M · (z1 z2 z3 z4
)t (4.11)

where M is the 4 × 4 matrix with entries in O(S4)

M =

⎛

⎜⎜
⎝

a1 b∗
1−1 −b∗

10 b01
−b1−1 −a1 −b∗

01 −b10
b10 b01 −a2 −b11

−b∗
01 b∗

10 b∗
11 a2

⎞

⎟⎟
⎠ , a1 = 1

2 (b1 − b2) , a2 = 1
2 (b1 + b2) .

(4.12)

The derivation (4.11) restricts to

Xπ : O(S4) → O(S4) ,
(
α β α∗ β∗ x

)t 
→ Mπ
(
α β α∗ β∗ x

)t (4.13)

with

Mπ =

⎛

⎜⎜⎜⎜
⎝

b1 b∗
1−1 0 b∗

11

√
2b∗

10
−b1−1 b2 −b∗

11 0
√
2b∗

01
0 b11 −b1 b1−1

√
2b10

−b11 0 −b∗
1−1 −b2

√
2b01

−b10 −b01 −b∗
10 −b∗

01 0

⎞

⎟⎟⎟⎟
⎠

. (4.14)
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4.1.3 The Lie ∗-algebra of gauge transformations

Wenext look for infinitesimal gauge transformations, that is H -equivariant derivations
X as in (4.11) which are vertical: Xπ (b) = 0, for b ∈ O(S4). These are the kernel of
thematrixMπ in (4.14). Their collection autO(S4)(O(S7)) is clearly anO(S4)-module.
It is also a Lie algebra with Lie bracket [bX , b′X ′] = bb′[X , X ′] for any b, b′ ∈ O(S4)
and X , X ′ ∈ autO(S4)(O(S7)).

The Spin(5) equivariance of the principal bundle S7 → S4 implies that the Lie
algebra autO(S4)(O(S7)) can be organised using the representation theory of the Lie
algebra so(5). Indeed, the Spin(5) action on S7 lifts to DerMH (O(S7)) via the adjoint
action, AdgX = Lg ◦ X ◦ L−1

g , where, as usual, Lg(a)(p) = a(g−1 p) for g ∈
Spin(5), p ∈ S7 and a ∈ O(S7). Since the Spin(5)-action closes on the subalgebra
O(S4) ⊆ O(S7), it also closes on the Lie subalgebra autO(S4)(O(S7)) of vertical
derivations, indeed AdgX(b) = Lg(X(L−1

g (b))) = 0 for all g ∈ Spin(5), b ∈ O(S4).
Infinitesimally, [T , X ](b) = 0 for all T ∈ so(5), b ∈ O(S4).

It follows that autO(S4)(O(S7)) = ⊕πVπ as linear space, with the sum over a class
of representations Vπ of so(5) of vertical O(SU (2))-equivariant derivations. This
decomposition will be worked out in details in § 4.1.4.

Proposition 4.1 The Lie ∗-algebra autO(S4)(O(S7)) of infinitesimal gauge transfor-
mations of theO(SU (2))-Hopf–Galois extensionO(S4) ⊂ O(S7) is generated, as an
O(S4)-module, by the elements

K1 := 2xH2 + β∗√2E01 + β
√
2E0−1

K2 := 2xH1 + α∗√2E10 + α
√
2E−10

W01 := √
2
(
βH1 + α∗E11 + αE−11

)

W0−1 := √
2
(
β∗H1 + α∗E1−1 + αE−1−1

)

W10 := √
2
(
αH2 − β∗E11 + βE1−1

)

W−10 := √
2
(
α∗H2 + β∗E−11 − βE−1−1

)

W11 := 2xE11 + α
√
2E01 − β

√
2E10

W−1−1 := 2xE−1−1 + α∗√2E0−1 − β∗√2E−10

W1−1 := −2xE1−1 + β∗√2E10 + α
√
2E0−1

W−11 := −2xE−11 + β
√
2E−10 + α∗√2E01. (4.15)

The ∗-structure is given by

K ∗
j = K j , W ∗

r = W-r. (4.16)
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Proof An H -equivariant real derivation X = b1H1 + b2H2 + ∑
r brEr vanishes on

O(S4) if Mπ
(
α α∗ β β∗ x

)t = 0, for the associated matrix Mπ in (4.14). This reads

b1α + b∗
1−1β + b∗

11β
∗ + √

2b∗
10x = 0

−b1α
∗ + b11β + b1−1β

∗ + √
2b10x = 0

−b1−1α − b∗
11α

∗ + b2β + √
2b∗

01x = 0

−b11α − b∗
1−1α

∗ − b2β
∗ + √

2b01x = 0

b10α + b∗
10α

∗ + b01β + b∗
01β

∗ = 0 . (4.17)

At the algebraic level of the present paper, it is enough to look for solutions with entries
of thematrixMπ that are linear in theO(S4) generators. An explicit computation leads
to the derivations

U1 = i
(
2xH1 + α∗√2E10 + α

√
2E−10

)

U2 = i
(
2xH2 + β∗√2E01 + β

√
2E0−1

)

W1 = (β∗ − β)H1 + α∗(E1−1 − E11) + α(−E−11 + E−1−1)

W2 = i
(
(β∗ + β)H1 + α∗(E1−1 + E11) + α(E−1−1 + E−11)

)

W3 = (α∗ − α)H2 + β∗(E−11 + E11) − β(E−1−1 + E1−1)

W4 = i
(
(α∗ + α)H2 + β∗(E−11 − E11) + β(E1−1 − E−1−1)

)

T1 = 2x(E11 − E−1−1) + √
2(αE01 − α∗E0−1 − βE10 + β∗E−10)

T2 = i
(
2x(E11 + E−1−1) + √

2(αE01 + α∗E0−1 − βE10 − β∗E−10)
)

T3 = 2x(E1−1 − E−11) + √
2(βE−10 + α∗E01 − β∗E10 − αE0−1)

T4 = i
(
2x(E1−1 + E−11) − √

2(βE−10 + α∗E01 + β∗E10 + αE0−1
)

.

The derivations in (4.15) are obtained as the linear combinations

K1 = −iU2 , K2 = −iU1 , W01 = −
√
2
2 (W1 + iW2) , W0−1 =

√
2
2 (W1 − iW2) ,

W10 = −
√
2
2 (W3 + iW4) , W−10 =

√
2
2 (W3 − iW4) , W11 = 1

2 (T1 − iT2) ,

W−1−1 = − 1
2 (T1 + iT2) , W1−1 = − 1

2 (T3 − iT4) , W−11 = 1
2 (T3 + iT4) .

Each vertical derivation, X = b1H1+b2H2+∑
r brEr, with b j , br ∈ O(S4)which

satisfy (4.17) is expressed as combination of the vertical derivations K j ,Wr in (4.15)
as

X = c1K1 + c2K2 +
∑

r
crWr

with coefficients c1, c2, cr ∈ O(S4) given by

c1 = 1
4

(
2xb2 + √

2β b01 + √
2β∗b0−1

)
c2 = 1

4

(
2xb1 + √

2αb10 + √
2α∗b−10

)
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c01 =
√
2
4

(
β∗b1 + αb11 + α∗b−11

)
c0−1 =

√
2
4

(
βb1 + αb1−1 + α∗b−1−1

)

c10 =
√
2
4

(
α∗b2 − βb11 + β∗b1−1

)
c−10 =

√
2
4

(
αb2 + βb−11 − β∗b−1−1

)

c11 = 1
4

(
2xb11 + √

2α∗b01 − √
2β∗b10

)
c−1−1 = 1

4

(
2xb−1−1 + √

2αb0−1 − √
2βb−10

)

c1−1 = 1
4

( − 2xb1−1 + √
2βb10 + √

2α∗b0−1
)

c−11 = 1
4

( − 2xb−11 + √
2β∗b−10 + √

2αb01
)
.

(4.18)

The proof uses the equation (4.17) for the kernel of Mπ . Indeed, from (4.15) one
computes:

X = c1K1 + c2K2 +
∑

r
crWr

= (
c01

√
2β + c22x + c0−1

√
2β∗)H1 + (

c12x + c10
√
2α + c−10

√
2α∗)H2

+ (
c1β

∗√2 + c11α
√
2 + c−11α

∗√2
)
E01

+ (
c1β

√
2 + c1−1α

√
2 + c−1−1α

∗√2
)
E0−1

+ (
c2α

∗√2 + c1−1β
∗√2 − c11β

√
2
)
E10

+ (
c2α

√
2 − c−1−1β

∗√2 + c−11β
√
2
)
E−10

+ (
c01

√
2α∗ − c10

√
2β∗ + c112x

)
E11

+ (
c01

√
2α + c−10

√
2β∗ − 2xc−11

)
E−11

+ (
c10

√
2β − c1−12x + c0−1

√
2α∗)E1−1

+ (
c0−1

√
2α − c−10

√
2β + c−1−12x

)
E−1−1

= b1H1 + b2H2 +
∑

r
brEr

where the last equality follows from equations (4.17) for the coefficients b j , br.

The generators in (4.15) satisfy K j ( f ∗) = −(K j ( f ))∗ andWr( f ∗) = −(W−r( f ))∗
for f ∈ O(S7), from which one gets the ∗-structure in (4.16). This also follows from
H∗

j = Hj and E∗
r = E−r, in (4.7) using (bX)∗ = b∗X∗, for b ∈ O(S4) and X a

derivation. ��
The action of the vertical derivations K j ,Wr on the algebra generators za ofO(S7)

is listed in Table 2 in Appendix 1.

Proposition 4.2 The generators in (4.15) transform under the adjoint representation
of so(5) with highest weight vector W11:

Hj � Kl = [Hj , Kl ] = 0 , Hj � Wr = [Hj ,Wr] = r jWr ,

Er � K j = [Er, K j ] = −r jWr ,

Er � W-r = [Er,W-r] = r1K1 + r2K2 , Er � Ws = [Er,Ws] = NrsWr+s , (4.19)

with Nrs the structure constants of so(5) as before, with Nrs = 0 if r+s is not a root.

Proof By direct computation. ��
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Remark 4.3 The generators in (4.15) are not independent over the algebra O(S4).
Indeed one finds they satisfy the relations:

βW0−1 − β∗W01 + αW−10 − α∗W10 = 0

−βK2 + √
2xW01 − α∗W11 + αW−11 = 0

−β∗K2 + √
2xW0−1 − αW−1−1 + α∗W1−1 = 0

−αK1 + √
2xW10 + β∗W11 + βW1−1 = 0

−α∗K1 + √
2xW−10 + βW−1−1 + β∗W−11 = 0 . (4.20)

These relations have a deep geometrical meaning. They are the vanishing ‘vertical’
components of five vector fields which are horizontal for a canonical connection on
the principal bundle [6]. These horizontal vector fields carry the five dimensional rep-
resentation of so(5) the smallest not trivial vector representation of so(5)with highest
weight vector of weight (1, 0). On the other hand, any d-dimensional representation
of so(5) as vertical vector fields on S7 vanishes when d < 10. Indeed, the only verti-
cal equivariant derivation which is linear in the generators of O(S4) and with weight
(1, 0) is X10 = α∗H2 + β∗E−11 − βE−1−1. This generator is annihilated by E1,1,
E1,0 and E1,−1, but it is not by E0,1. Since E0,1 � X10 has weight (1, 1) which is not
present in the five-dimensional representation, we conclude that the minimal space of
(linear in the generators of O(S4)) derivations is ten-dimensional.

4.1.4 A representation theoretical decomposition of autO(S4)(O(S7))

The result of multiplying the generators of O(S4) with the ten vector fields in (4.15)
can be organised using the representation theory of so(5) (cf. [1, 2]). An irreducible
representation of so(5) is characterised by two non negative integers (s, n) and we
denote it [d(s, n)]. It has highest weight vector of weight s

2 (1, 1) + n(1, 0) and is of
dimension d(s, n) = 1

6 (1+ s)(1+n)(2+ s+n)(3+ s+2n). The generic vector field
in the O(S4)-module autO(S4)(O(S7)) is a combination of the vector fields in (4.15)
with coefficients given by polynomials in the generators ofO(S4). The algebraO(S4)
decomposes in the sum of irreducible representations of so(5) (spherical harmonics
on S4) as

O(S4) =
⊕

n∈N0

[d(0, n)] (4.21)

with [d(0, n)] the representation of highestweight vectorαn ofweight (n, 0) consisting
of polynomials of homogeneous degree n in the generators ofO(S4) (see Appendix 1).

The 50 vector fields obtained by multiplying the vector fields in (4.15) with the
generators ofO(S4) can be arranged according to the representations [35]⊕[10]⊕[5].
The highest weight vectors for these three representations are worked out to be given
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respectively by:

Z21 = αW11 ,

Y11 = √
2xW11 + αW01 − βW10 ,

X10 = β∗W11 + βW1−1 − αK1 + √
2xW10, (4.22)

with the label denoting the value of the corresponding weight.

Lemma 4.4 When represented as vector fields on the bundle, the representation [5]
generated by the vector X10 above vanishes. Also, Y11 = −√

2W11 so that the repre-
sentation [10] generated by Y11 is the one in Proposition 4.2. The vector Z21 makes
up the representation [35], none of whose vectors do vanish.

Proof The action of so(5) on the vector X10 yields the additional four vectors

X00 = β∗W01 − βW0−1 + α∗W10 − αW−10

X01 = βK2 − √
2xW01 + α∗W11 − αW−11

X−10 = −α∗K1 + √
2xW−10 + βW−1−1 + β∗W−11

X0−1 = −β∗K2 + √
2xW0−1 − αW−1−1 + α∗W1−1 . (4.23)

These five derivations vanish on O(S7); they are in fact the vanishing combinations
of derivations in (4.20). (The relations (4.20) have then a representation-theoretical
meaning.) Using the 4-sphere relation and the relations in (4.3) one shows that

Y11 = √
2xW11 + αW01 − βW10 = −√

2W11. (4.24)

Then the vector Y11 generates the starting representation [10] in (4.15) as stated. ��

By construction autO(S4)(O(S7)) is closed under commutator. It turns out that
the commutators of the derivations in (4.15) can be expressed again in terms of the
derivations in (4.15) with coefficients which are linear in the generators ofO(S4) (all
commutators are listed in Appendix 1. More specifically we have the following:

Lemma 4.5 The commutators of the derivations in (4.15) can be organised according
to the representation [35] ⊕ [10] of so(5) already found and generated by αW11 and
W11.

Proof There are 45 commutators. The non vanishing commutator with highest weight
is [W11,W10] with weight (2, 1). A direct computation shows that

[W11,W10] = −√
2αW11

and the corresponding representation is the [35] found in the previous lemma.
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The commutator [W11,W1−1], the only one of weight (2, 0), belongs to the repre-
sentation [35]. The latter comprises also two combinations of the three vectors

[K1,W11], [K2,W11], [W10,W01].

of weight (1, 1). On the other hand, their combination

T11 = [K1,W11] + [K2,W11] + [W10,W01]

is annihilated by all positive element of so(5) and generates a copy of the representation
[10]. In fact this is just the starting representation in (4.15) of Proposition 4.2. An
explicit computation gives

[K1,W11] = 2xW11 − √
2βW10

[K2,W11] = 2xW11 + √
2αW01

[W10,W01] = −√
2βW10 + √

2αW01

so that using the relation (4.24) one obtains

T11 = 2
√
2Y11 = −4W11. (4.25)

Thus the representation [10] generated by T11 is the one in (4.15) as stated. ��

Proposition 4.6 The Lie algebra autO(S4)(O(S7)) decomposes as

autO(S4)(O(S7)) =
⊕

n∈N0
[d(2, n)] .

Here [d(2, n)] is the representation of so(5) as derivations onO(S7) of highest weight
vector αnW11 of weight (n+1, 1) and dimension d(2, n) = 1

2 (n+1)(n+4)(2n+5).

Proof From the splitting (4.21) of O(S4) (and Appendix 1), we need to consider the
10 · d(0, n) vector fields obtained by multiplying the 10 vector fields in (4.15) with
the polynomials of degree n in the generators of O(S4) that are in the representation
[d(0, n)] of highest weight vector αn . Of these, αnW11 = αn−1Z21 is a highest weight
vector and generates the representation [d(2, n)]. For the remaining vectors fields,
αn−1Y11 is a highest weight vector generating the representation [d(2, n − 1)]. There
is then the highest weight vector αn−1X10 generating the representation [d(0, n)]. And
finally there is the highest weight vector αn−3ρ2Z21 = αn−3Z21 of the representation
[d(2, n−2)] (here ρ2 := αα∗+ββ∗+x2 = 1). There is no room for additional vectors
since a direct computation shows that d(2, n)+d(2, n−1)+d(0, n)+d(2, n−2) =
10·d(0, n). Since Z21 = αW11, Y11 = −√

2W11 and X10 = 0, the only representation
which has not yet appeared in lower degree is [d(2, n)], the one of highest weight
αnW11. ��
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4.1.5 Braided derivations and infinitesimal gauge transformations

The right invariant vector fields H1 and H2 of Spin(5) are the vector fields of amaximal
torus T

2 ⊂ Spin(5). They define the universal enveloping algebra K of the abelian
Lie algebra [H1, H2] = 0. Their action (4.4) onO(S7) commutes with theO(SU (2))
right coaction onO(S7). To the torus 2-cocycle of [3, Ex. 3.21] there corresponds then
a twist

F := eπ iθ(H1⊗H2−H2⊗H1) , θ ∈ R , (4.26)

with universal R-matrix RF = F
2
. In fact these elements belong to a topological

completion of the algebraic tensor product K ⊗ K . This fact does not play a role here
since we diagonalise F (we systematically use it on eigen-functions of the generators
H1, H2).

The twist F in (4.26) hence leads to theO(SU (2))-Hopf–Galois extensionO(S4θ ) =
O(S7θ )coO(SU (2)) ⊂ O(S7θ ) introduced in [12]. It satisfies equation (3.14) so that it is
compatible with the ∗-structure. To conform with the literature, in the following we
use the subscript θ instead of F for twisted algebras and their multiplications, as well
as for module structures. The ∗-algebraO(S7θ ) is generated by coordinates za, z∗a , a =
1, 2, 3, 4.Their commutation relations are obtained from(2.25) given that for the action
of H1 and H2 the za have eigenvalues 1

2 (1,−1), 1
2 (−1, 1), 1

2 (−1,−1), 1
2 (1, 1), for

a = 1, 2, 3, 4. The only nontrivial relations among the za are:

z1•θ z3 = eπ iθ z3•θ z1 , z1•θ z4 = e−π iθ z4•θ z1 ,

z2•θ z3 = e−π iθ z3•θ z2 , z2•θ z4 = eπ iθ z4•θ z2 .

Those with the z∗a are obtained using that they have eigenvalues opposite to the eigen-
values of the za . These coordinates satisfy the relation z1•θ z∗1 + z2•θ z∗2 + z3•θ z∗3 +
z4•θ z∗4 = 1. The ∗-subalgebra O(S4θ ) of O(SU (2))-coinvariants is generated by

α := 2(z1•θ z∗3 + z∗2•θ z4), β := 2(z2•θ z∗3 − z∗1•θ z4),

x := z1•θ z∗1 + z2•θ z∗2 − z3•θ z∗3 − z4•θ z∗4. (4.27)

The only nontrivial commutation relations are

α•θβ = e−2π iθβ•θ α , α•θβ
∗ = e2π iθβ∗ •θ α (4.28)

and their complex conjugates. They can be obtained from the twisted multiplication
rule (2.25) by using that α,β, x are eigen-functions of H1 and H2, with eigenvalues
(1, 0), (0, 1) and (0, 0) respectively. They satisfy the relationsα•θα

∗+β•θβ
∗+x•θx =

1. From these one then establishes:

(1 − x)•θ z1 = α•θ z3 − z4•θβ
∗ , (1 − x)•θ z2 = z4•θα

∗ + β•θ z3 ,

(1 + x)•θ z3 = α∗•θ z1 + β∗•θ z2 , (1 + x)•θ z4 = z2•θα − z1•θβ . (4.29)
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Remark 4.7 The relations (4.29) are the analogues of the classical ones (4.3). However,
in passing from the algebra O(S4) to the algebra O(S4θ ) we rescaled by a phase the
classical elements α, β. In the vector space O(S4θ ) = O(S4), one has x = x and

α = 2(z1•θ z∗3 + z∗2•θ z4) = e− π iθ
2 2(z1z

∗
3 + z∗2z4) = e− π iθ

2 α

β = 2(z2•θ z∗3 − z∗1•θ z4) = e
π iθ
2 2(z2z

∗
3 − z∗1z4) = e

π iθ
2 β .

Since the Lie algebra so(5) is a braided Lie algebra associated with K with trivial
R-matrix R = 1⊗ 1, we can twist it to the braided Lie algebra soθ (5) associated with

(KF, RF = F
2
). It has Lie brackets (see Proposition 2.2)

[H1, H2]F = [H1, H2] = 0 ; [Hj , Er]F = [Hj , Er] = r j Er ;
[Er, E−r]F = [Er, E−r] = r1H1 + r2H2 ;
[Er, Es]F = e−iπθ r∧s[Er, Es] = e−iπθ r∧sNrsEr+s , (4.30)

with r ∧ s := r1s2 − r2s1. Here, as for the so(5)-commutators in (4.6), Nrs = 0 if r+s
is not a root.

Similarly, theO(S4)-module and Lie ∗-algebra DerMH (O(S7)) is deformed to the
O(S4θ )-module and braided Lie ∗-algebra (DerMH (O(S7))F, [ , ]F, ·F, ∗) associated
with (KF, RF). The module (DerMH (O(S7))F is generated by derivations Hj and Er
with module structure in (2.34):

a ·F Hj = aHj , as ·F Er = e−π iθ s∧r asEr ,

for all a ∈ O(S7θ ) and as ∈ O(S7θ ) eigen-functions of Hj with eigenvalues s j (being
Er eigenvectors of Hj ). The Lie brackets are determined by those of soθ (5) in (4.30)
using equation (2.35) for the module structure. The ∗-structure is the same as that of
DerMH (O(S7)), as stated in the first sentence of § 3.3.3.

The Lie ∗-algebra of infinitesimal gauge transformations autO(S4)(O(S7)) is gen-
erated, as an O(S4)-module, by the operators in (4.15). Its twist deformation is the
O(S4θ )-module and braided Lie ∗-algebra (

autO(S4)(O(S7))F, [ , ]F, ·F, ∗
)
associated

with (KF, RF = F
2
). It has braided Lie bracket determined on generators:

[K1, K2]F = [K1, K2] ; [K j ,Wr]F = [K j ,Wr] ;
[Wr,Ws]F = e−iπθ r∧s[Wr,Ws] , (4.31)

in parallel with the result in (4.30). On generic elements X , X ′ in the linear span of
the generators in (4.15) and b, b′ ∈ O(S4), the equation (2.35) gives

[b ·F X , b′ ·F X ′]F = b ·F (RFα � b′) ·F [RFα � X , X ′]F . (4.32)
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From Corollary 3.11 we have DerMH (O(S7θ )) = D((DerMH (O(S7))F) withD an
isomorphism of KF-braided Lie and AF-module ∗-algebras. In particular D(Hj )

∗̃ =
D(H∗

j ) = D(Hj ) andD(Er)
∗̃ = D(E∗

r ) = D(E−r), j = 1, 2, r ∈ � (cf. (4.7)). Thus,
recalling (4.30):

Proposition 4.8 ThebraidedLie∗-algebraDerMH (O(S7θ ))of equivariant derivations
of theO(SU (2))-Hopf–Galois extensionO(S4θ ) ⊂ O(S7θ ) is generated, as anO(S4θ )-
module by elements

H̃ j := D(Hj ) , Ẽr := D(Er) , j = 1, 2 , r ∈ � (4.33)

with bracket closing the braided Lie algebra soθ (5):

[H̃1, H̃2]RF = D([H1, H2]) = 0 ; [H̃ j , Ẽr]RF = D([Hj , Er]) = r j Ẽr ;
[Ẽr, Ẽ−r]RF = D([Er, E−r]) =

∑

j
r j H̃ j ;

[Ẽr, Ẽs]RF = e−iπθ r∧sD([Er, Es]) = e−iπθ r∧sNrs Ẽr+s (4.34)

(and Nrs = 0 if r+s is not a root). The O(S4θ )-module structure is in (2.36) (with

•F = •θ ). The ∗-structure on generators is given by H̃
∗̃
j = H̃ j and Ẽ

∗̃
r = Ẽ−r.

For as ∈ O(S7θ ) an eigen-function of Hj of eigenvalue s j , the derivation Ẽr acts as

Ẽr(as) = (F
α � Er)(Fα � as) = e−iπθ r∧sEr(as) . (4.35)

On the product of two such eigen-functions as, am ∈ O(S7θ ), we can explicitly see

that Ẽr acts as a braided derivation, with respect to the braiding RF = F21 F = F
2
:

Ẽr(as•θam) = e−iπθ r∧(s+m)e−iπθ s∧mEr(asam)

= e−iπθ( r∧(s+m)+ s∧m)
[
Er(as)am + asEr(am)

]

= e−iπθ( r∧(s+m)+ s∧m)
[
eiπθ (r+s)∧mEr(as)•θam + eiπθ s∧(r+m)as)•θ Er(am)

]

= e−iπθ r∧sEr(as)•θam + e−2iπθ(r∧s+ r∧m)as•θ Er(am)

= Ẽr(as)•θam + e−2iπθ r∧sas•θ Ẽr(am). (4.36)

Using these results for the subalgebra autO(S4θ )(O(S7θ )) = D(autO(S4)(O(S7))F) of

vertical derivations, we have the following characterization of autO(S4θ )(O(S7θ )).

Proposition 4.9 The braided Lie ∗-algebra autO(S4θ )(O(S7θ )) of infinitesimal gauge

transformations of the O(SU (2))-Hopf–Galois extension O(S4θ ) ⊂ O(S7θ ) is gener-
ated, as an O(S4θ )-module, by the elements

K̃ j := D(K j ) , W̃r := D(Wr) , j = 1, 2 , r ∈ � (4.37)
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with bracket given in Table 1. The braided Lie bracket of generic elements X̃ , X̃ ′ in
autO(S4θ )(O(S7θ )) and b, b′ ∈ O(S4θ ) is then given by

[b•θ X̃ , b′•θ X̃ ′]RF = b•θ (RFα � b′)•θ [RFα � X̃ , X̃ ′]RF . (4.38)

The ∗-structure on generators is given by K̃
∗̃
j = K̃ j and W̃

∗̃
r = W̃−r. It is extended

on the whole autO(S4θ )(O(S7θ )) via (3.21).

Proof For all X̃ , X̃ ′ ∈ autO(S4θ )(O(S7θ )) we have [X̃ , X̃ ′]RF = D([X , X ′]F) from
Proposition 2.6 with the bracket on the right hand side given in (4.31). Using the
classical Lie brackets listed in Table 3 of Appendix 1, we can compute the brackets
of the generators of the braided gauge Lie algebra autO(S4θ )(O(S7θ )). For instance, for

[W̃−1−1, W̃01]RF we first compute

[W−1−1,W01]F = eπ iθ [W−1−1,W01] = eπ iθ (
√
2βW−1−1 − √

2α∗(K1 + K2))

= eπ iθ (eπ iθ
√
2β ·F W−1−1 − √

2α∗ ·F (K1 + K2)).

Here we used (4.31) to relate the brackets [ , ]F and [ , ], the module structure
of autO(S4)(O(S7))F in (2.34) and that the coordinates of the sphere S4 are eigen-
functions of H1 and H2. Next, applying the algebra map D leads to

[W̃−1−1, W̃01]RF = D([W−1−1,W01]F)
= e2π iθ

√
2 ϕββ•θ W̃−1−1 − eπ iθ

√
2 ϕ∗

αα∗ •θ (K̃1 + K̃2).

Here to pass from the generators ofO(S4) to those ofO(S4θ )weused (seeRemark 4.7):

α = ϕαα := e
π iθ
2 α , β = ϕββ := e− π iθ

2 β . (4.39)

Half of the brackets among the generators (4.37) of the braided Lie algebra
autO(S4θ )(O(S7θ )) are listed in Table 1. The remaining ones can be obtained simi-
larly, or more directly using the compatibility of the ∗-structure with the braided Lie
algebra and O(S4)-module structures as in (3.21),

[X̃ ′∗̃, X̃ ∗̃]RF = ([X̃ , X̃ ′]RF)∗̃, (b•θ X̃)∗̃ = (RFγ � b∗)•θ (RFγ � X̃ ∗̃) .

Recalling that D is a ∗-isomorphism we have

K̃
∗̃
j = D(K ∗

j ) = D(K j ) = K̃ j , W̃
∗̃
r = D(W ∗

r ) = D(W−r) = W̃−r .

Therefore,

[K̃ j , W̃−r]RF = [K̃ ∗̃
j , W̃

∗̃
r ]RF = ([W̃r, K̃ j ]RF)∗̃ ,
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[W̃−r, W̃−s]RF = [W̃ ∗̃
r , W̃ ∗̃

s ]RF = ([W̃s, W̃r]RF)∗̃ ,

with

[W̃r, K̃ j ]RF = −[K̃ j , W̃r]RF , [W̃s, W̃r]RF = −e−2iπθs∧r[W̃r, W̃s]RF .

For instance,

[K̃2, W̃0−1]RF = −([K̃2, W̃01]RF)∗̃ = −√
2(e−π iθ ϕ∗

αα∗•θ W̃11 + eπ iθ ϕαα•θ W̃−11)
∗̃

= −√
2(e−π iθ ϕαα •θ W̃−1−1 + eπ iθ ϕ∗

αα∗•θ W̃1−1)

while

[W̃10, W̃0−1]RF = −(e−2π iθ [W̃−10, W̃01]RF)∗̃
= −e2π iθ

√
2(e2π iθ ϕββ•θ W̃−10 + ϕ∗

αα∗•θ W̃01)
∗̃

= −e2π iθ
√
2( ϕ∗

ββ∗•θ W̃10 + e−2π iθ ϕαα•θ W̃0−1)

= −√
2(e2π iθ ϕ∗

ββ∗•θ W̃10 + ϕαα•θ W̃0−1) .

��

The action of any element W̃r on an algebra element as ∈ O(S7θ ) is as in (4.35),

W̃r(as) = e−iπθ r∧sWr(as) , (4.40)

with a braided derivation property as in (4.36),

W̃r(as•θam) = W̃r(as)•θam + e−2iπθ r∧sas•θ W̃r(am). (4.41)

4.2 The orthogonal bundle on the homogeneous space S4�

The 4-sphere of the previous example is the prototype of more general noncommu-
tative θ -spheres S2nθ . These are quantum homogeneous spaces of quantum groups
SOθ (2n + 1, R) [7, 14]. The Hopf–Galois extension O(S2nθ ) = O(SOθ (2n +
1, R))coO(SOθ (2n,R)) ⊂ O(SOθ (2n + 1, R)) was obtained in [3] from the extension
of the classical SO(2n)-bundle SO(2n + 1) → S2n via a twist deformation process
for quantum homogeneous spaces.

As in the previous section, the modules of infinitesimal gauge transformations of
these noncommutative Hopf–Galois extensions are obtained by deforming those of
the corresponding classical bundles. We study here the case n = 2 of the Hopf–Galois
extension O(S4θ ) = O(SOθ (5, R))coO(SOθ (4,R)) ⊂ O(SOθ (5, R)). We address the
general case in [6].
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Table 1 The braided brackets of vertical derivations

[K̃1, K̃2]RF = √
2( ϕ∗

αα∗•θ W̃10 − ϕαα •θ W̃−10)

[K̃1, W̃01]RF = −√
2 ϕββ•θ K̃2 + 2x•θ W̃01

[K̃1, W̃1−1]RF = −2x•θ W̃1−1 + √
2eπ iθ ϕ∗

ββ∗•θ W̃10

[K̃1, W̃10]RF = √
2e−π iθ ϕββ•θ W̃1−1 − √

2eπ iθ ϕ∗
ββ∗•θ W̃11

[K̃1, W̃11]RF = 2x•θ W̃11 − √
2e−π iθ ϕββ•θ W̃10

[K̃2, W̃01]RF = √
2e−π iθ ϕ∗

αα∗•θ W̃11 + √
2eπ iθ ϕαα •θ W̃−11

[K̃2, W̃1−1]RF = 2x•θ W̃1−1 − √
2e−π iθ ϕαα •θ W̃0−1

[K̃2, W̃10]RF = 2x•θ W̃10 − √
2 ϕαα •θ K̃1

[K̃2, W̃11]RF = 2x•θ W̃11 + √
2eπ iθ ϕαα •θ W̃01

[W̃01, W̃1−1]RF = √
2 ϕββ•θ W̃1−1 + √

2eπ iθ ϕαα •θ (K̃2 − K̃1)

[W̃01, W̃10]RF = √
2 ϕββ•θ W̃10 − √

2eπ iθ ϕαα •θ W̃01
[W̃01, W̃11]RF = √

2 ϕββ•θ W̃11
[W̃1−1, W̃10]RF = √

2 ϕαα •θ W̃1−1
[W̃1−1, W̃11]RF = −√

2e−π iθ ϕαα •θ W̃10
[W̃10, W̃11]RF = √

2 ϕαα •θ W̃11
[W̃−1−1, W̃01]RF = √

2e2π iθ ϕββ•θ W̃−1−1 − √
2eπ iθ ϕ∗

αα∗•θ (K̃1 + K̃2)

[W̃−1−1, W̃1−1]RF = √
2e−2π iθ ϕ∗

ββ∗•θ W̃0−1

[W̃−1−1, W̃10]RF = √
2 ϕαα •θ W̃−1−1 + √

2eπ iθ ϕ∗
ββ∗•θ (K̃1 + K̃2)

[W̃−1−1, W̃11]RF = −2x•θ (K̃1 + K̃2) − √
2 ϕαα •θ W̃−10 − √

2 ϕββ•θ W̃0−1
[W̃−10, W̃01]RF = √

2e2π iθ ϕββ•θ W̃−10 + √
2 ϕ∗

αα∗•θ W̃01
[W̃−10, W̃1−1]RF = −√

2 ϕ∗
αα∗•θ W̃1−1 + √

2e−π iθ ϕ∗
ββ∗•θ (K̃2 − K̃1)

[W̃10, W̃−10]RF = √
2( ϕ∗

ββ∗•θ W̃01 + ϕββ•θ W̃0−1)

[W̃−11, W̃01]RF = √
2e2π iθ ϕββ•θ W̃−11

[W̃0−1, W̃01]RF = √
2( ϕ∗

αα∗•θ W̃10 − ϕαα •θ W̃−10)

[W̃−11, W̃1−1]RF = 2x•θ (K̃1 − K̃2) − √
2 ϕ∗

ββ∗•θ W̃01 + √
2 ϕαα •θ W̃−10

LetO(M(4, R)) be the commutative complex ∗-algebra with generators mJL , and
capital indices J , L running from 1 to 4. It has the standard bialgebra structures

�(M) = M
.⊗ M , ε(M) = 14, for M = (mJL), (4.42)

in matrix notation, where
.⊗ denotes the combination of tensor product and matrix

multiplication. The Hopf algebra O(SO(4, R)) of coordinate functions on SO(4, R)

is the quotient of O(M(4, R)) by the bialgebra ideal

IQ := 〈 Mt QM − Q ; MQMt − Q 〉 , Q :=
(

0 12
12 0

)
= Qt = Q−1 (4.43)

and the further assumption det(M) = 1. Indeed, this is a ∗-ideal for the ∗-structure
∗(M) = QMQt in O(M(4, R)). If we introduce on the set of indices {1, . . . , 4} the
involution defined by 1′ = 3 and 2′ = 4, the ∗-structure can be given as

(mJL)∗ = mJ ′L ′ , J , L = 1, · · · , 4. (4.44)

The ∗-bialgebraO(SO(4, R)) is a Hopf ∗-algebra with antipode S(M) := QMt Q−1.
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Similarly, one has the algebraO(M(5, R)), the commutative ∗-bialgebra with gen-
erators nJ L (capital indices J , L now run from 1 to 5). The coproduct and counit are

�(N ) = N
.⊗ N , ε(N ) = 15, for N := (nJ L). (4.45)

The algebra of coordinate functions on SO(5, R) is the quotient of O(M(5, R)) by
the bialgebra ∗-ideal

JQ = 〈Nt QN − Q ; NQNt − Q 〉 , Q :=
(

0 12 0
12 0 0
0 0 1

)
, (4.46)

and the additional requirement that det(N ) = 1. The ∗-structure is now
(nJ L)∗ = nJ ′L ′ , J , L = 1, · · · , 5 (4.47)

with 5′ = 5. ThenO(SO(5, R)) is aHopf∗-algebrawith antipode S(N ) := QNt Q−1.

We shall select the last column of N by writing n j5 = u j , for j = 1, · · · , 4 and
n55 = x .

The surjective Hopf ∗-algebra morphism

π : O(SO(5, R)) −→ O(SO(4, R)) , N 
−→ (
M 0
0 1

)
(4.48)

induces a right coaction of O(SO(4, R)) on O(SO(5, R)):

δ := (id ⊗ π)� : O(SO(5, R)) −→ O(SO(5, R)) ⊗ O(SO(4, R))

N 
−→ N
.⊗

(
M 0
0 1

)
. (4.49)

The ∗-subalgebra of O(SO(5, R)) made of coinvariant elements is isomorphic to the
∗-algebra of coordinate functions O(S4) on the 4-sphere S4. It is indeed generated
by the elements ui , u∗

i and x in the last column of the defining matrix N = (nJK ) of
O(SO(5, R)), which satisfy the sphere equation (S(N )N )55 = 2(u∗

1u1+u∗
2u2)+x2 =

1. The algebra extension O(S4) = O(SO(5, R))coO(SO(4,R)) ⊂ O(SO(5, R)) is
Hopf–Galois.

The coordinate algebra of this orthogonal 4-sphere is isomorphic to the one of the
4-sphere of the previous section (the base space algebra of the SU (2)-fibration) with
generators in (4.2) via the identification

u1 → 1√
2
α, u2 → 1√

2
β, x → x . (4.50)

We now determine infinitesimal gauge transformations of the Hopf–Galois exten-
sion O(S4) ⊂ O(SO(5, R)) using, as done for the previous example, the representa-
tion theory of so(5) as vector fields on the bundle. Like it was the case for the instanton
bundle, the O(S4)-module of infinitesimal gauge transformations is generated by the
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ten generators of so(5). The crucial difference (see Proposition 4.13) is that in the
present example, vector fields of given degree n in the generators ofO(S4) split in the
sum of two irreducible representations with distinct highest weight vectors with same
weight.

We then start with the O(S4)-module of equivariant derivations for H :=
O(SO(4, R)).

DerMH (O(SO(5, R))) = {X ∈ Der(O(SO(5, R))) | δ ◦ X = (X ⊗ id) ◦ δ}.
(4.51)

Let ∂I J denote the derivation on O(M(5, R)) given on the generators by ∂I J (nK L) =
δI K δJ L , for I , J , K , L = 1, . . . , 5. Then, recalling the coaction (4.49), DerMH

(O(SO(5, R))) is generated by the derivations

H1 := n1K ∂1K − n3K ∂3K H2 := n2K ∂2K − n4K ∂4K

E10 := n5K ∂3K − n1K ∂5K E−10 := n3K ∂5K − n5K ∂1K

E01 := n5K ∂4K − n2K ∂5K E0−1 := n4K ∂5K − n5K ∂2K

E11 := n2K ∂3K − n1K ∂4K E−1−1 := n3K ∂2K − n4K ∂1K

E1−1 := n4K ∂3K − n1K ∂2K E−11 := n3K ∂4K − n2K ∂1K (4.52)

with summation on K = 1, . . . , 5 understood. They satisfy H∗
j = Hj and E∗

r = E−r.
These ten generators close the Lie ∗-algebra of so(5) in (4.6), from which the labels
used. It is important to notice that due to the equivariance for the right coaction of
O(SO(4, R)), when applied to a generator nJK , these derivations do not move the
second index. This fact will play a role later on. Being equivariant, they restrict to
derivations on the ∗-subalgebra O(S4) of coinvariants:

Hπ
1 = u1∂u1 − u∗

1∂u∗
1

Hπ
2 = u2∂u2 − u∗

2∂u∗
2

Eπ
10 = x∂u∗

1
− u1∂x Eπ−10 = u∗

1∂x − x∂u1

Eπ
01 = x∂u∗

2
− u2∂x Eπ

0−1 = u∗
2∂x − x∂u2

Eπ
11 = u2∂u∗

1
− u1∂u∗

2
Eπ−1−1 = u∗

1∂u2 − u∗
2∂u1

Eπ
1−1 = u∗

2∂u∗
1
− u1∂u2 Eπ−11 = u∗

1∂u∗
2
− u2∂u1 , (4.53)

using partial derivations for the generators n j5 of O(S4). With the isomorphism in
(4.50) these derivations coincide with the ones in (4.8).

The generic equivariant derivation is of the form X = b1H1 + b2H2 + ∑
r brEr,

with b j , br ∈ O(S4) and Hj , Er in (4.52). The condition for X to be vertical only uses
its restriction to O(S4), that is the derivations in (4.53) and thus coincides with the
conditions (4.17) under the isomorphism (4.50). Then, in parallel with Proposition 4.1
for the generators (4.15), and noticing that its proof only uses the algebra structure of
O(S4), we have the following result (we are dropping an overall factor of 2).
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Proposition 4.10 The Lie ∗-algebra autO(S4)(O(SO(5, R))) of infinitesimal gauge
transformations of the O(SO(4, R))-Hopf–Galois extension O(S4) ⊂ O(SO(5, R))

is generated, as an O(S4)-module, by the derivations

K1 := xH2 + u∗
2E01 + u2E0−1 K2 := xH1 + u∗

1E10 + u1E−10

W01 := u2H1 + u∗
1E11 + u1E−11 W0−1 := u∗

2H1 + u∗
1E1−1 + u1E−1−1

W10 := u1H2 − u∗
2E11 + u2E1−1 W−10 := u∗

1H2 + u∗
2E−11 − u2E−1−1

W11 := xE11 + u1E01 − u2E10 W−1−1 := xE−1−1 + u∗
1E0−1 − u∗

2E−10

W1−1 := −xE1−1 + u∗
2E10 + u1E0−1 W−11 := −xE−11 + u2E−10 + u∗

1E01
(4.54)

with K ∗
j = K j andW ∗

r = W−r. They are eigen-operators for H1 and H2 and transform
under the adjoint representation [10] of so(5) (that is (4.19) hold), withW11 the highest
weight vector.

In particular we have that Hj � Kl = 0 and Hj � Wr = r jWr, and this induces a
(left, see later) Z

2-grading on the derivations. They satisfy analogue relation of those
in (4.20):

u2W0−1 − u∗
2W01 + u1W−10 − u∗

1W10 = 0

− u2K2 + xW01 − u∗
1W11 + u1W−11 = 0

u∗
2K2 − xW0−1 + u1W−1−1 − u∗

1W1−1 = 0

− u1K1 + xW10 + u∗
2W11 + u2W1−1 = 0

u∗
1K1 − xW−10 − u2W−1−1 − u∗

2W−11 = 0 . (4.55)

Remark 4.11 The Lie bracket of the generators Hj and Wr are those in Table 3 of
Appendix 1 (with the identification (4.50) and up to a rescaling). While the Lie ∗-
algebras autO(S4)(O(S7)) and autO(S4)(O(SO(5, R))) have the same Lie bracket on
generators, they differ as O(S4)-modules, and hence as Lie ∗-algebras, since in the
orthogonal case there is no analogue of the constraint (4.24) occurring in the instanton
case.

As in the case of the instanton bundle (cf. Lemma4.4), the fifty vector fields obtained
by multiplying the vector fields in (4.54) with the generators ofO(S4) can be arranged
according to the representations [35]⊕[10]⊕[5] of so(5). The highest weight vectors
for these three representations are given respectively by:

Z21 = u1W11 ,

Y11 = xW11 + u1W01 − u2W10 ,

X10 = u∗
2W11 + u2W1−1 − u1K1 + xW10, (4.56)

with the label denoting the value of the corresponding weight. These are the analogous
of the vector fields found in (4.22) for the SU (2) Hopf bundle.
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When represented as vector fields on the bundle, the vector X10 is zero (because
of relations analogous to (4.23)) and the representation [5] it generates vanishes. On
the other hand, the vector field Y11 is no longer proportional to W11, as it was for the
Hopf bundle case due to the constraint (4.24). An explicit computation, using also the
condition (N †N )5K = δ5K yields:

W11 = (xn2K − u2n5K )∂3K + (−xn1K + u1n5K )∂4K + (u2n1K − u1n2K )∂5K

Y11 = u1(u2n1K − u1n2K )∂1K + u2(u2n1K − u1n2K )∂2K

+ (n2K − u2δ5K + u∗
1(u2n1K − u1n2K ))∂3K

+ (−n1K + u1δ5K + u∗
2(u2n1K − u1n2K ))∂4K + x(u2n1K − u1n2K )∂5K .

The vector field Y11 generates a different copy of the ten-dimensional representation of
so(5) that we denote by [̂10] to distinguish it from the ten-dimensional representation
[10] of highestweight vectorW11. Notice thatwhile [10] consists of vector fieldswhich
are combinations of those in (4.54) with coefficients of degree zero in the generators
of O(S4), elements of [̂10] are combinations with coefficients of degree one.

Next, in parallel with Lemma 4.5, the representation [35]⊕ [̂10] of so(5) just found
are the ones that occur in the decomposition of the commutators.

Lemma 4.12 The commutators of the derivations in (4.54) can be organised according
to the representations [35] ⊕ [̂10] of so(5) of highest weight vectors αW11 and Y11
respectively.

Proof There are 45 non vanishing commutators. The non vanishing commutator with
highest weight is [W11,W10] with weight (2, 1). A direct computation shows that

[W11,W10] = −u1W11

and the corresponding representation is the [35] found above.

The other highest weight vector, of weight (1, 1), is

T11 = [K1,W11] + [K2,W11] + [W10,W01] = 4(xW11 − u2W10 + u1W01) = 4Y11 .

Thus the representation generated by T11 is the ten dimensional [̂10]. ��

By using the decomposition of O(S4) in (4.21), in parallel to Proposition 4.6, we
have:

Proposition 4.13 There is a decomposition

autO(S4)(O(SO(5, R))) =
⊕

n∈N0

[d(2, n)] ⊕ ̂[d(2, n − 1)] .
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Here [d(2, n)], respectively ̂[d(2, n − 1)], is the representation of so(5) with highest
weight vector αnW11 of weight (n + 1, 1), respectively αn−1Y11 of weight (n, 1); they
consist of derivations on O(SO(5, R)) which are combinations of the derivations in
(4.54) with polynomials coefficients of degree n in the generators of O(S4).

4.2.1 Braided derivations and infinitesimal gauge transformations

Let us now pass to the twisted Hopf–Galois extension

O(S4θ ) = O(SOθ (5, R))coO(SOθ (4,R)) ⊂ O(SOθ (5, R)).

We briefly recall its construction from twist deformation (see [3, §4.1] for details).
Consider the 2-cocycle γ : O(T2) ⊗ O(T2) → C on O(T2) ⊂ O(SO(4, R)),
given on the generators by γ (t1 ⊗ t2) = e−π iθ , γ (t2 ⊗ t1) = eπ iθ and
γ (t1 ⊗ t1) = γ (t2 ⊗ t2) = 1. Notice that here γ = σ 2, where σ is the cocycle used in
§4.1.5.We use it to deform the Hopf ∗-algebraO(SO(4, R)) into the noncommutative
Hopf ∗-algebraO(SOθ (4, R)). This latter has same coalgebra structure as the original
one but twisted algebra multiplication,

mI J •θmKL = γ (TI ⊗ TK )mI JmK L γ̄ (TJ ⊗ TL) , I , J , K , L = 1, . . . , 4,

where T := diag(t1, t2, t∗1 , t∗2 ). (Here again, to conform with the literature we use the
subscript θ instead of γ for twisted algebras and their multiplications.) We set λ

λI J := (γ (TI ⊗ TJ ))
2

so that λI J = exp(−2iπθI J ). Since γ̄ (TJ ⊗ TL) = γ (TL ⊗ TJ ), and γ (TL ⊗ T ∗
J ) =

γ̄ (TL ⊗ TJ ) we have λJ I = λI J
−1 = λI J ′ . It follows that the generators in

O(SOθ (4, R)) satisfy the commutation relations

mI J •θmKL = λI KλL J mK L•θmI J , I , J , K , L = 1, . . . , 4. (4.57)

The twisted antipode turns out to be equal to the starting one, Sθ (mI J ) = S(mI J ).

The relations (4.43) become

Mt •θ Q•θ M = Q , M•θ Q•θ Mt = Q , (4.58)

together with detθ (M) = 1. The ∗-structure is as in (4.44).
Next, using the projection π in (4.48) we lift the 2-cocycle from O(SO(4, R)) to

O(SO(5, R)) (or equivalently we consider the same torus T
2 embedded in SO(5)).

The resulting Hopf ∗-algebra is denoted by O(SOθ (5, R)) and has generators nI J
with relations

nI J •θnK L = λI KλL J nK L•θnI J , I , J , K , L = 1, . . . , 5, (4.59)
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where now T := diag(t1, t2, t∗1 , t∗2 , 1), and orthogonality conditions Nt •θ Q•θ N = Q
and N •θ Q•θ Nt = Q, with detθ (N ) = 1. The ∗-structure is as in (4.47).

The quantum homogeneous space O(S4) is deformed into the quantum homoge-
neous space O(S4θ ) ⊂ O(SOθ (5, R)), consisting of coinvariants of O(SOθ (5, R))

under theO(SOθ (4, R))-coaction. This noncommutative ∗-subalgebraO(S4θ ) is gen-
erated by five elements {uI = nI5}I=1,...,5 = {ui , ui ′ = u∗

i , x}i=1,2 with commutation
relations, obtained from (4.59),

uI •θuJ = λI J u J •θuI . (4.60)

The orthogonality conditions imply the sphere relation 2
∑2

i=1 u
∗
i •θui +x2 = 1. From

the general theory in [3], the algebra extensionO(S4θ ) ⊂ O(SOθ (5, R))of the quantum
homogeneous space O(S4θ ) =
O(SOθ (5, R))coO(SOθ (4,R)) is still Hopf–Galois.

When considering the braided Lie ∗-algebra of infinitesimal gauge transforma-
tions of this Hopf–Galois extension, it is useful to think of the latter as the result of
a double deformation done with commuting left coaction of O(T2) and right coac-
tion of O(T2) ⊂ O(SO(4, R)). This second O(T2) disappears when considering
O(SO(4, R)) equivariant quantities. This is the case for the algebra O(S4) of coin-
variant elements. It is also the case for the equivariant derivations in Proposition 4.10
and it is in this sense that those derivations can be thought of as having trivial right
Z
2-grading (they do not move the second index in a generator nJK as already men-

tioned).

Thus for the braided Lie ∗-algebra of infinitesimal gauge transformations of the
Hopf–Galois extensionO(S4θ ) = O(SOθ (5, R))coO(SOθ (4,R)) we just need to consider
the left torus action and the construction goes exactly as for the SU (2) instanton case
of the previous section. In particular we can repeat the construction in §4.1.5 verbatim
by considering the maximal torusT

2 ⊂ SO(5), generated by the right invariant vector
fields H1 and H2 of SO(5), and use the twist

F := eπ iθ(H1⊗H2−H2⊗H1) ∈ K ⊗ K ⊂ U (so(5))op ⊗U (so(5))op , θ ∈ R,

(4.61)

of K , where K is generated by the right invariant vector fields H1 and H2. Hence K is
the universal enveloping algebra of the Cartan subalgebra of so(5)op, the Lie algebra
so(5) being that of left invariant vector fields on SO(5), cf. [5, §7.1]. The braided
Lie ∗-algebras of braided derivations and of infinitesimal gauge transformations of
the Hopf–Galois extension O(S4θ ) ⊂ O(SOθ (5, R)) are the twist (left) deformations
of DerMH (O(SO(5, R))) and of autO(S4)(O(SO(5, R))) respectively (with the right
torus action playing no role).

As O(S4)-modules, the Lie algebra DerMH (O(SO(5, R))), H = O(SO(4, R)),
is generated by the operators in (4.52) while the Lie algebra of infinitesimal gauge
transformations autO(S4)(O(SO(5, R))) is generated by the operators in (4.54).
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From Corollary 3.11 DerMH (O(SOθ (5, R))) = D(DerMH (O(SO
(5, R))F),where nowH = O(SOθ (4, R)), andD is an isomorphismofO(SOθ (5, R)))-
braided Lie and O(SOθ (5, R)))-module ∗-algebras. In parallel with Proposition 4.8,
we then have:

Proposition 4.14 The braided Lie ∗-algebra DerMH (SOθ (5, R)) of equivariant
derivations of the O(SOθ (4, R))-Hopf–Galois extension O(S4θ ) ⊂ O(SOθ (5, R))

is generated, as an O(S4θ )-module, by elements

H̃ j := D(Hj ) , Ẽr := D(Er) , j = 1, 2 , r ∈ �. (4.62)

As in (4.34) the bracket closes the braided Lie algebra soθ (5),

[H̃1, H̃2]RF = 0 ; [H̃ j , Ẽr]RF = r j Ẽr ;
[Ẽr, Ẽ−r]RF =

∑

j
r j H̃ j ; [Ẽr, Ẽs]RF = e−iπθ r∧sNrs Ẽr+s

with Nrs = 0 if r+s is not a root. The ∗-structure is H̃ ∗̃
j = H̃ j and Ẽ

∗̃
r = Ẽ−r.

Corollary 3.11 also yields autO(S4θ )(O(SOθ (5, R))) = D(autO(S4θ )(O(SO
(5, R))θ ). From Remark 4.11 the brackets among the generatorsD(K j ) andD(Wr) of
autO(S4θ )(O(S7θ )) and among those of autO(S4θ )(O(SOθ (5, R))) have the same expres-
sion. This follows comparing the twist expressions (4.26) and (4.61) that define the
isomorphisms D. Nevertheless the braided Lie ∗-algebras autO(S4θ )(O(S7θ )) and of

autO(S4θ )(O(SOθ (5, R))) are different because of the different O(S4θ )-module struc-
tures. Thus as in Proposition 4.9:

Proposition 4.15 The braided Lie ∗-algebra autO(S4θ )(O(SOθ (5, R))) of infinitesi-

mal gauge transformations of the O(SOθ (4, R))-Hopf–Galois extension O(S4θ ) ⊂
O(SOθ (5, R)) is generated, as an O(S4θ )-module, by the elements

K̃ j := D(K j ) , W̃r := D(Wr) , j = 1, 2 , r ∈ � (4.63)

with brackets in Table 1 with the identifications ϕαα → √
2u1, ϕββ → √

2u2,
x → x following from (4.39) and (4.50) (and up to a rescaling). The braided Lie
bracket of generic elements in autO(S4θ )(O(SOθ (5, R))) is given by

[b•θ X̃ , b′•θ X̃ ′]RF = b•θ (RFα � b′)•θ [RFα � X̃ , X̃ ′]RF (4.64)

for b, b′ ∈ O(S4θ ) and X̃ , X̃ ′ in the linear span of the generators in (4.63). The

∗-structure on the generators K̃
∗̃
j = K̃ j , W̃

∗̃
r = W̃−r is extended to the whole

autO(S4θ )(SOθ (5, R)) via the O(S4θ )-module compatibility (3.21), (b•θ X̃)∗̃ = (RFγ �
b∗)•θ (RFγ � X̃ ∗̃). It is compatible with the bracket, [X̃ ′∗̃, X̃ ∗̃]RF = ([X̃ , X̃ ′]RF)∗̃.
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Appendix A. Decomposition ofO(S4)

We study how O(S4) decomposes in the sum of irreducible representations [d(s, n)]
of so(5). In the algebraO(R5), both α and ρ2 = αα∗ +ββ∗ +x2 are annihilated by all
raising operators Wr (the ones for positive roots), and thus their powers and products.
They are of weight (1, 0) and (0, 0) respectively.

Let V (r) be the
(4+r

r

)
-dimensional vector space of monomials of degree r in the

indeterminates α, α∗, β, β∗, x . The vectors αr−2kρ2k are highest weight vectors of
V (r) and

V (r) =
� r2 �⊕

k=0

[d(0, r − 2k)] (4.65)

where [d(0, r − 2k)] is the irreducible representation with highest weight vector
αr−2kρ2k of weight (r − 2k, 0), and of dimension d(0, r − 2k) = 1

6 (1+ r − 2k)(2+
r − 2k)(3 + 2r − 4k). Indeed, for r = 2m,

∑m

k=0
d(0, 2m − 2k) =

∑m

k=0
d(0, 2m) = 1

3

∑m

k=0
(3 + 13k + 18k2 + 8k3)

= 1
3

(
3 + 13 m(m+1)

2 + 18 m(m+1)(2m+1)
6 + 8 m2(m+1)2

4

)

= 1
6 (m + 1)(6 + 19m + 16m2 + 4m3) ,
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which coincides with the dimension
(4+2m

2m

)
of V (2m). Similar computations go for r

odd.

For α, α∗, β, β∗, x coordinate functions on O(S4), ρ2 = 1 and with fixed r , all
representations [d] in the decomposition (4.65) already appeared in V (r ′) for some
r ′ < r , but for [d(0, r)]. We hence conclude that

O(S4) =
⊕

n∈N0

[d(0, n)]

where [d(0, n)] has highest weight vector αn of weight (n, 0).

Appendix B. Matrix representation of the braided Lie algebra so�(5)

We give a matrix representation of the braided Lie algebra soθ (5) as defined in (4.34).

Consider weights μ, ν = (0, 0), (±1, 0), (0,±1) with order

(1, 0) = 1 , (0, 1) = 2 , (−1, 0) = 3 , (0,−1) = 4 , (0, 0) = 5.

Using this order for an identification between weights and row/column indices, define
matrices Eμν of components

(Eμν)στ := λμ∧νδμσ δντ .

The product of two such matrices is found to be

EμνEτσ = λ(μ−ν)∧(τ−σ)δντEμσ .

The minus signs in the exponents are due to Eμν having weight μ − ν (cf. (4.57)).

A direct computation shows the following:

Lemma 1 The matrices

K1 := E11 − E33 K2 := E22 − E44
K10 := E15 − E53 K−10 := E51 − E35
K11 := E14 − E23 K−1−1 := E41 − E32
K01 := E25 − E54 K0−1 := E52 − E45
K1−1 := E12 − E43 K−11 := E21 − E44

give a matrix representation of the algebra soθ (5) (see (4.34)) with the identification
Kr ↔ Ẽr and setting [Kr, Ks]RF := KrKs − λ2r∧sKsKr for the braided commutator of
matrices.
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Table 2 Vertical vector fields onO(S7)

z1 z2 z3 z4

K1 −xz1 + β∗z4 xz2 + βz3 −xz3 + β∗z2 xz4 + βz1
K2 xz1 + αz3 −xz2 − α∗z4 −xz3 + α∗z1 xz4 − αz2

W01
1√
2
βz1 − √

2αz2 − 1√
2
βz2 − 1√

2
βz3 − √

2α∗z4 1√
2
βz4

W0−1
1√
2
β∗z1 − 1√

2
β∗z2 − √

2α∗z1 − 1√
2
β∗z3 1√

2
β∗z4 − √

2αz3

W10 − 1√
2
αz1

1√
2
αz2 − √

2βz1 − 1√
2
αz3 + √

2β∗z4 1√
2
αz4

W−10 − 1√
2
α∗z1 − √

2β∗z2 1√
2
α∗z2 − 1√

2
α∗z3 1√

2
α∗z4 + √

2βz3

W11 αz4 βz4 −2xz4+αz2−βz1 =
(1 − x)z4

0

W−1−1 −β∗z3 α∗z3 0 −2xz3 + α∗z1 +
β∗z2 = (1 − x)z3

W1−1 0 2xz1 − β∗z4 + αz3 =
(1 + x)z1

β∗z1 αz1

W−11 2xz2 + βz3 + α∗z4 =
(1 + x)z2

0 α∗z2 −βz2

The matrices Kr in the lemma are of the form

Kμ,ν := Eμν∗ − Eνμ∗ , for μ + ν = r . (4.66)

The braided commutator [Kμ,ν, Kτ,σ ]RF = Kμ,νKτ,σ − λ2(μ+ν)∧(τ+σ))Kτ,σKμ,ν is
found to be

[Kμ,ν, Kτ,σ ]RF = λ(μ+ν)∧(τ+σ)
(
δν∗τKμ,σ − δμ∗τKν,σ − δν∗σKμ,τ + δσ ∗μKν,τ

)
.

(4.67)

In the classical limit, λ = 1, the matrices Eμν reduce to the usual elementary matrices
and those in Lemma 1 give the defining matrix representation of the Lie algebra so(5).

The Lie ∗-algebra autO(S4)(O(S7))

In Table 2 we list the action of the generators (4.15) of the Lie algebra of infinitesimal
gauge transformations on the generators of the algebra O(S7).

We list in Table 3 half of the brackets of the generators (4.15) of the Lie algebra of
infinitesimal gauge transformations autO(S4)(O(S7)), obtained by direct computation.
The remaining brackets are obtained using the ∗-structure:

[K j ,W−r] = [K ∗
j ,W

∗
r ] = −([K j ,Wr])∗,

[W−r,W−s] = [W ∗
r ,W ∗

s ] = −([Wr,Ws])∗,
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Table 3 The brackets of vertical derivations

[K1, K2] = √
2(α∗W10 − αW−10)

[K1,W01] = −√
2βK2 + 2xW01 [K2,W01] = √

2(α∗W11 + αW−11)

[K1,W1−1] = −2xW1−1 + √
2β∗W10 [K2,W1−1] = 2xW1−1 − √

2αW0−1
[K1,W10] = √

2(−β∗W11 + βW1−1) [K2,W10] = 2xW10 − √
2αK1

[K1,W11] = 2xW11 − √
2βW10 [K2,W11] = 2xW11 + √

2αW01

[W01,W1−1]=
√
2βW1−1+√

2α(−K1+K2) [W−1−1,W01]=
√
2βW−1−1−√

2α∗(K1+K2)

[W01,W10] = √
2(βW10 − αW01) [W−1−1,W1−1] = √

2β∗W0−1
[W01,W11] = √

2βW11 [W−1−1,W10] = √
2αW−1−1 + √

2β∗(K1 + K2)

[W1−1,W10] = √
2αW1−1

[W−1−1,W11] = −2x(K1 + K2) − √
2(αW−10 + βW0−1)

[W1−1,W11] = −√
2αW10 [W−10,W01] = √

2(βW−10 + α∗W01)

[W10,W11] = √
2αW11 [W−10,W1−1] = −√

2α∗W1−1 + √
2β∗(−K1 + K2)

[W10,W−10] = √
2(β∗W01 + βW0−1) [W0−1,W01] = √

2(α∗W10 + αW−10)

[W−11,W01] = √
2βW−11 [W−11,W1−1] = 2x(K1 − K2) − √

2(β∗W01 − αW−10)

with K ∗
j = K j and W ∗

r = W−r (see (4.16)) and (bX)∗ = b∗X∗ for each b ∈ O(S4)
and X a derivation. For example, one computes

[K2,W0−1] = −([K2,W01])∗ = −√
2(α∗W1−1 + αW−1−1)

[W10,W0−1] = −([W−10,W01])∗ = −√
2(β∗W10 + αW0−1) .
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