We prove Moderate Deviation estimates for nodal lengths of random spherical harmonics both on the whole sphere and on shrinking spherical domains. Central Limit Theorems for the latter were recently established in Marinucci et al. (2020) and Todino (2020), respectively. Our proofs are based on the combination of a Moderate Deviation Principle by Schulte and Thäle (2016) for sequences of random variables living in a fixed Wiener chaos with a well-known result based on the concept of exponential equivalence

Moderate Deviation estimates for Nodal Lengths of Random Spherical Harmonics

Todino, Anna Paola
2021-01-01

Abstract

We prove Moderate Deviation estimates for nodal lengths of random spherical harmonics both on the whole sphere and on shrinking spherical domains. Central Limit Theorems for the latter were recently established in Marinucci et al. (2020) and Todino (2020), respectively. Our proofs are based on the combination of a Moderate Deviation Principle by Schulte and Thäle (2016) for sequences of random variables living in a fixed Wiener chaos with a well-known result based on the concept of exponential equivalence
File in questo prodotto:
File Dimensione Formato  
18-11.pdf

file disponibile agli utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 518.63 kB
Formato Adobe PDF
518.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
MacciRT.pdf

file ad accesso aperto

Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 214.31 kB
Formato Adobe PDF
214.31 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/165042
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact