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Abstract

We prove Moderate Deviation estimates for nodal lengths of random spherical har-
monics both on the whole sphere and on shrinking spherical domains. Central Limit
Theorems for the latter were recently established in Marinucci, Rossi and Wigman
(2020) and Todino (2020), respectively. Our proofs are based on the combination of
a Moderate Deviation Principle by Schulte and Thäle (2016) for sequences of random
variables living in a fixed Wiener chaos with a well-known result based on the concept
of exponential equivalence.
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1 Introduction: background and motivations

1.1 Random spherical harmonics

Let S
2 denote the two-dimensional unit sphere with the round metric and ∆ the spher-

ical Laplacian. In standard spherical coordinates (θ, ϕ) ∈ [0, π] × [0, 2π), where θ is the
colatitude, the metric takes the form

dx2 = dθ2 + sin2 θdϕ2. (1.1)

It is well-known that the spectrum of ∆ is purely discrete, its eigenvalues are of the form
−ℓ(ℓ + 1) where ℓ ∈ N and, for each ℓ, the family of the so-called spherical harmonics of
degree ℓ {Yℓ,m,m = 1, . . . , 2ℓ+1} is a real orthonormal basis of the ℓ-th eigenspace [MP11,
§3.4].

Definition 1.1. For ℓ ∈ N, the ℓ-th random spherical harmonic Tℓ is a centered Gaussian
field on S

2 whose covariance kernel is given by

Cov (Tℓ(x), Tℓ(y)) = Pℓ(cos d(x, y)), x, y ∈ S
2, (1.2)

where Pℓ denotes the Legendre polynomial [MP11, §13.1.2] of degree ℓ and d(x, y) the spher-
ical geodesic distance (see (1.1)) between x and y.

1Corresponding author. E-mail address: maurizia.rossi@unimib.it
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Equivalently, one can define Tℓ as follows

Tℓ(x) :=

√
4π

2ℓ+ 1

2ℓ+1∑

m=1

aℓ,mYℓ,m(x), x ∈ S
2, (1.3)

where {aℓ,m,m = 1, . . . , 2ℓ+ 1} are standard Gaussian and independent random variables,
defined on a probability space (Ω,F ,P). Actually, from the addition formula [MP11, (3.42)]
for random spherical harmonics the covariance kernel of Tℓ in (1.3) is given by (1.2). It is
immediate that Tℓ is isotropic, and that it is P−a.s. an eigenfunction of the spherical
Laplacian with eigenvalue −ℓ(ℓ+1). We can assume {Tℓ, ℓ ∈ N} to be independent random
fields, indeed they are the Fourier components of isotropic Gaussian fields on the sphere,
see e.g. [BMV07] and [MP11, §5, §6].

Now we recall the Hilb’s asymptotic formula: let ǫ > 0, uniformly for θ ∈ [0, π − ǫ] and
ℓ ∈ N≥1

Pℓ(cos θ) =

√
θ

sin θ
J0 ((ℓ+ 1/2) θ) +O

(
ℓ−3/2

)
, (1.4)

where J0 is the Bessel function [Sze75, §1.71] of the first kind of order zero, see the con-
ventions below for the meaning of the O−notation. The scaling limit, as ℓ → +∞, of Tℓ is
the so-called Berry’s Random Wave model which, according to Berry’s conjecture [Ber77],
should model the local behavior of high-energy deterministic eigenfunctions on “generic
chaotic” surfaces.

Conventions. Given two sequences of positive real numbers {xn, n ∈ N} and {yn, n ∈ N}
we will write xn = O(yn) if the ratio xn/yn is asymptotically bounded, and xn = o(yn) if
limn→+∞ xn/yn = 0. Moreover, we will write xn ≈ yn if both xn = O(yn) and yn = O(xn)
hold.

1.2 Nodal lengths: asymptotic distribution

Let us consider the nodal set T−1
ℓ (0) := {x ∈ S

2 : Tℓ(x) = 0}. It is well-known that T−1
ℓ (0) is

an P−a.s. smooth curve whose connected components are homeomorphic to the circle. We
are interested in the high-energy geometry of the nodal set, in particular in the asymptotic
behavior, as ℓ → +∞, of the nodal length

Lℓ := length(T−1
ℓ (0)). (1.5)

The latter received great attention also in view of Yau’s conjecture on nodal volumes of
deterministic eigenfunctions on compact Riemannian manifolds [Yau82]. We collect the
main known results on the distribution of Lℓ in a single theorem (Theorem 1.2 below): the
expected length was studied in [Ber85], the asymptotic variance in [Wig10] and the second
order fluctuations of Lℓ in [MRW20]. In order to state them, let us recall that, for X,Y
integrable real random variables, the Wasserstein distance between X and Y is defined
as dW (X,Y ) := suph |E[h(X)] − E[h(Y )]|, where the supremum is taken over the set of
Lipschitz functions whose Lipschitz constant is ≤ 1. From now on, Z ∼ N (0, 1) will denote
a standard Gaussian random variable.

Theorem 1.2. For every ℓ ∈ N

E[Lℓ] =
4π

2
√
2

√
ℓ(ℓ+ 1). (1.6)
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As ℓ → +∞, we have

Var(Lℓ) =
1

32
log ℓ (1 + o(1)). (1.7)

Moreover, denoting

L̃ℓ :=
Lℓ − E[Lℓ]√

Var(Lℓ)
,

a quantitative CLT in Wasserstein distance holds, i.e., as ℓ → +∞

dW

(
L̃ℓ, Z

)
= O

(
(log ℓ)−1/2

)
. (1.8)

Note that, from (1.6) and (1.7) we have Lℓ/
√

ℓ(ℓ+ 1) → 4π/(2
√
2) P−a.s. as ℓ → +∞,

consistently with Yau’s conjecture [Yau82]. From (1.8) we conclude in particular that the
asymptotic distribution of the nodal length is Gaussian. Moreover, from (1.8) and [NP12,
(C.2.6)]

dKol

(
L̃ℓ, Z

)
= O

(
(log ℓ)−1/4

)
, (1.9)

where for arbitrary real random variables X,Y , the Kolmogorov distance between X and
Y is defined as dKol(X,Y ) := supx∈R |P(X ≤ x)− P(Y ≤ x)|.

1.2.1 Shrinking spherical domains

In [Tod20] the asymptotic behavior of the nodal length in shrinking spherical domains was
investigated. Fixed a point x0 ∈ S

2, let Br denote the spherical cap of radius r > 0 centered
at x0 and consider the length of nodal lines in Br

Lℓ,Br
:= length(T−1

ℓ (0) ∩Br).

We recall that the area of Br is equal to 2π(1 − cos r). We have the following results
summarized in the next theorem.

Theorem 1.3. For any r > 0

E[Lℓ,Br
] =

2π(1 − cos r)

2
√
2

√
ℓ(ℓ+ 1). (1.10)

For a sequence of radii {rℓ, ℓ ∈ N} converging to zero not too rapidly (rℓℓ → +∞) we have,
as ℓ → +∞,

Var(Lℓ,Br
ℓ
) =

1

256
r2ℓ log(rℓℓ) +O(r2ℓ ). (1.11)

Moreover, denoting

L̃ℓ,Br
ℓ
:=

Lℓ,Br
ℓ
− E[Lℓ,Br

ℓ
]

√
Var(Lℓ,Brℓ

)

we have a quantitative CLT in Wasserstein distance as ℓ → +∞

dW

(
L̃ℓ,Br

ℓ
, Z

)
= O

(
(log rℓℓ)

−1/2
)
. (1.12)

Indeed (1.12) follows from the proof of Theorem 2.2 in [Tod20] (at the end of §5.2.3) where
in particular it is proved that the distribution of the nodal length in shrinking domains is
asymptotically Gaussian. As in the previous case, we can also deduce that, as ℓ → +∞,

dKol

(
L̃ℓ,Br

ℓ
, Z

)
= O

(
(log rℓℓ)

−1/4
)
. (1.13)

In this paper we are interested in refinements of Central Limit Theorems stated above
(Theorems 1.2 and 1.3).
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1.3 Moderate Deviation Principles

The theory of Large Deviations allows an asymptotic computation of small probabilities at
exponential scales. Here we start by recalling a basic definition. From now on let (Ω,F ,P) be
a complete probability space, and {Xn, n ∈ N} a sequence of real-valued random variables:
for each n the map

Xn : Ω → R

is measurable with respect to F and B(R) (the Borel σ-field of R) on Ω and R respectively.

Definition 1.4. We say that {Xn, n ∈ N} satisfies the Large Deviation Principle (LDP)
with speed 0 ≤ sn ր +∞ and good rate function2 I if for every α ≥ 0 the level set
{x : I(x) ≤ α} is compact and for all B ∈ B(R) we have

− inf
x∈B̊

I(x) ≤ lim inf
n→+∞

1

sn
log P(Xn ∈ B) ≤ lim sup

n→+∞

1

sn
log P(Xn ∈ B) ≤ − inf

x∈B̄
I(x),

where B̊ (resp. B̄) denotes the interior (resp. the closure) of B.

Let us now recall the notion of exponential equivalence [DZ98, Definition 4.2.10] related
to the question whether the LDP for {Yn, n ∈ N} can be deduced from the LDP for {Xn, n ∈
N}, {Yn, n ∈ N} being another sequence of real-valued random variables.

Definition 1.5. We say that {Xn, n ∈ N} and {Yn, n ∈ N} are exponentially equivalent at
speed 0 ≤ sn ր +∞ if, for every δ > 0,

lim sup
n→+∞

1

sn
log P(|Xn − Yn| > δ) = −∞. (1.14)

As far as the LDP is concerned, exponentially equivalent sequences of random variables
are indistinguishable [DZ98, Theorem 4.2.13].

Lemma 1.6. Assume that {Xn, n ∈ N} satisfies the LDP with speed sn and good rate
function I. Then, if {Xn, n ∈ N} and {Yn, n ∈ N} are exponentially equivalent at speed sn,
the same LDP holds for {Yn, n ∈ N}.

A Moderate Deviation Principle (MDP) is a class of LDPs for families of random variables
depending on the choice of certain scalings in a suitable class. Moreover, all these LDPs
(whose speed function depends on the scaling) are ruled by the same quadratic rate function
vanishing at zero (actually, usually one deals with families of centered random variables, or
asymptotically centered). In several cases the choice of the scaling parameters allows to fill
the gap between the convergence in probability to a constant and the convergence in law
to a centered Gaussian random variable.

Example 1.7. Let {Zn, n ∈ N} be a sequence of i.i.d. real-valued random variables such
that the moment-generating function

R ∋ λ 7→ logE
[
eλZ1

]

is finite in some ball around the origin, E[Z1] = 0 and Var(Z1) = 1. Let us define for each
n the random variable

Xn :=

n∑

i=1

Zi/
√
n.

2See §1.2 in [DZ98] for details.
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For any sequence of positive numbers {an, n ∈ N} such that

an → +∞, an/
√
n → 0,

a MDP with speed a2n and rate function I(x) := x2/2, x ∈ R, holds for {Xn, n ∈ N}, namely
for every Borel set B ⊂ R

− inf
x∈B̊

I(x) ≤ lim inf
n→+∞

1

a2n
logP(Xn/an ∈ B) ≤ lim sup

n→+∞

1

a2n
logP(Xn/an ∈ B) ≤ − inf

x∈B̄
I(x),

where B̊ (resp. B̄) denotes the interior (resp. the closure) of B.

The classical example [DZ98, Theorem 3.7.1] recalled just above concerns the empirical
means of i.i.d. random variables; indeed, if these random variables have finite moment
generating function in a neighborhood of the origin, a class of LDPs holds filling the gap
between the asymptotic regimes of the Law of Large Numbers (LLN) and the Central Limit
Theorem (CLT): indeed, using the same notation as in Example 1.7, as n → +∞ we have

Xn/
√
n → 0 P− a.s., Xn

d→Z ∼ N (0, 1),

where →d denotes convergence in distribution.
Furthermore, for completeness, we recall that a LDP linked to a LLN is provided by the

celebrated Cramér Theorem [DZ98, Theorem 2.2.3].

2 Main results and outline of the paper

2.1 Statement of main results

Our main results concern MDPs which refine Theorems 1.2 and 1.3, namely a class of LDPs
for nodal lengths of random spherical harmonics for certain scalings {aℓ, ℓ ∈ N} that tend
to infinity slowly (see conditions (2.1) and (2.2) in Theorems 2.1 and 2.2 below), with speed
a2ℓ , and common quadratic rate function I(x) = x2/2, x ∈ R. Moreover, for aℓ = 1 (and
in such a case the condition aℓ → +∞ in (2.1) and (2.2) fails) we have the convergence
in law to the standard Normal distribution (Theorem 1.2 and Theorem 1.3). Recall the
preliminaries in Section 1.3 and the discussion just after the statement of Lemma 1.6.

Theorem 2.1. Let {aℓ, ℓ ∈ N} be any sequence of positive numbers such that, as ℓ → +∞,

aℓ → +∞, aℓ/
√

log log ℓ → 0. (2.1)

The sequence of random variables

{
L̃ℓ/aℓ, ℓ ∈ N

}

satisfies a MDP with speed a2ℓ and rate function I(x) = x2/2, x ∈ R.

From now on, {rℓ, ℓ ∈ N} is a sequence of radii such that (see Theorem 1.3)

rℓℓ → +∞.
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Theorem 2.2. Let {aℓ, ℓ ∈ N} be any sequence of positive numbers such that, as ℓ → +∞,

aℓ → +∞, aℓ/
√

log log rℓℓ → 0. (2.2)

The sequence of random variables

{
L̃ℓ,Brℓ

/aℓ, ℓ ∈ N

}

satisfies a MDP with speed a2ℓ and rate function I(x) = x2/2, x ∈ R.

To the best of our knowledge, Theorem 2.1 and Theorem 2.2 are the first MD estimates
for Lipschitz-Killing curvatures of excursion sets of Laplacian Gaussian eigenfunctions on
manifolds and on shrinking domains on manifolds, respectively.

Remark 2.3 (Lipschitz-Killing curvatures). The conditions aℓ/
√
log log ℓ → 0 in (2.1) and

aℓ/
√
log log rℓℓ → 0 in (2.2) are plausibly not optimal; this is a drawback of the proof

technique we decided to adopt. Our choice was based on the fact that we do not have any
information on the moment-generating function of the nodal length and, more importantly,
on the shortness of our argument as well as on its flexibility. Indeed, our strategy can be
immediately adapted to prove MD estimates for the other Lipschitz-Killing (LK) curvatures
of excursion sets at any level of random spherical harmonics such as the length of level
curves, the excursion area and the Euler-Poincaré characteristic (see e.g. [CM18, MW14,
Tod19] and the references therein). Actually, our approach works well independently of the
underlying manifold as long as the random model is Gaussian and long-memory, for instance
in the case of arithmetic random waves, see [BMW20, Cam19, MPRW16, NPR19, PR18]
and the references therein.

2.2 On the proofs of the main results

The nodal length Lℓ in (1.5) is a finite-variance functional of the Gaussian field Tℓ (Defi-
nition 1.1) hence it can be written as an orthogonal series, the so-called Wiener-Îto chaos
expansion, converging in L2(P) of the form

Lℓ = E[Lℓ] +

+∞∑

q=1

Lℓ[q], (2.3)

where Lℓ[q] is the orthogonal projection of Lℓ onto the so-called Wiener chaos of order q.
The expansion in (2.3) relies on the fact that the family of suitably normalized Hermite
polynomials {Hq, q ∈ N} is an orthonormal basis for the space of square integrable functions
on the real line with respect to the Gaussian density. Recall that H0 ≡ 1 and

Hq(t) := (−1)qφ−1(t)
dq

dtq
φ(t), t ∈ R, q ∈ N≥1, (2.4)

where φ denotes the standard Gaussian density. In particular H1(t) = 1, H2(t) = t2 − 1,
H3(t) = t3 − 3t and H4(t) = 3t4 − 6t2 + 3. It turns out that Lℓ − E[Lℓ] is asymptotically
equivalent, in the L2(P)-sense, to its fourth chaotic component Lℓ[4] which is moreover fully
correlated, as ℓ → +∞, to the sample trispectrum of Tℓ. More precisely let us define, for
ℓ ∈ N,

Mℓ := −1

4

√
ℓ(ℓ+ 1)

2

1

4!

∫

S2

H4(Tℓ(x)) dx; (2.5)
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Theorem 1.2 in [MRW20] states that, as ℓ → +∞,

E

[∣∣∣L̃ℓ − M̃ℓ

∣∣∣
2
]
= O

(
(log ℓ)−1

)
, (2.6)

where

M̃ℓ :=
Mℓ√

Var(Mℓ)
.

Now recall that the sequence of random variables {M̃ℓ, ℓ ∈ N} lives in the fourth Wiener
chaos. On that space, convergence in law to a standard Gaussian random variable can be
proved [NP05, NP09] showing that its fourth cumulant goes to zero, hence

Cum4(M̃ℓ) → 0. (2.7)

Theorem 1 in [ST16] ensures that under (2.7) a MDP holds for the normalized sample
trispectrum. See also [DE13] for MDP via cumulants and [Led90] for LDP for Wiener
chaos.

In this paper, as a preliminary result (Lemma 4.1), firstly we will establish a MDP for

{M̃ℓ/aℓ, ℓ ∈ N} with the rate function I in Theorem 1.2 and speed a2ℓ , whenever as ℓ → +∞

aℓ → +∞, aℓ/(log ℓ)
1/7 → 0.

Then, in order to deduce a MDP for the whole series on the right hand side of (2.3),

i.e. to establish Theorem 2.1, we will prove that {M̃ℓ/aℓ, ℓ ∈ N} and {L̃ℓ/aℓ, ℓ ∈ N}
are exponentially equivalent (Definition 1.5) at speed a2ℓ provided that aℓ goes to infinity
sufficiently slowly (see (2.1)) according to (2.6). Finally Lemma 1.6 will allow to conclude.

The proof of Theorem 2.2 relies on the same ideas as those developed just before for the
proof of Theorem 2.1.

2.3 Plan of the paper

In §3 we recall both the notion of Wiener chaos and the chaotic expansion (2.3) for the
nodal length of random spherical harmonics. In particular, in §3.3 we recall the reduction
principle for nodal lengths on the sphere and on shrinking domains leading in particular to
(2.6). Finally in §4 we give the proofs of our main results.

3 Nodal lengths and Wiener chaos

3.1 Wiener chaos

It is well-known [NP12, Proposition 1.4.2] that the family {Hq/
√
q!, q ∈ N} of suitably

normalized Hermite polynomails (2.4) is a complete orthonormal system in the space of
square integrable real functions L2(φ) with respect to the standard Gaussian measure on
the real line.

Random spherical harmonics (1.3) are linear combinations of i.i.d. standard Gaussian
random variables {aℓ,m : ℓ = 1, 2, . . . ,m = 1, . . . , 2ℓ + 1}; we define accordingly the space
X to be the closure in L2(P) of lin{aℓ,m : ℓ = 1, 2, . . . ,m = 1, . . . , 2ℓ + 1}, thus X is a real
centered Gaussian Hilbert subspace of L2(P). Now let q ∈ N; the q-th Wiener chaos Cq
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associated with X is defined as the closure in L2(P) of all real finite linear combinations of
random variables of the form

Hp1(x1)Hp2(x2) · · ·Hpk(xk)

for k ∈ N≥1, where p1, ..., pk ∈ N satisfy p1 + · · ·+ pk = q, and (x1, x2, . . . , xk) is a standard
Gaussian vector extracted from X (plainly, C0 = R and C1 = X). Note that (from (1.3))
for every ℓ the random fields Tℓ and ∇Tℓ viewed as collections of Gaussian random variables
indexed by x ∈ S

2 are all lying in X.
Taking into account the orthonormality and completeness of {Hq/

√
q!, q ∈ N} in L2(φ),

together with a monotone class argument (see e.g. [NP12, Theorem 2.2.4]), one can prove
that Cq ⊥Cq′ in L2(P) whenever q 6= q′, and moreover

L2
X(P) =

∞⊕

q=0

Cq,

where L2
X(P) := L2(Ω, σ(X),P), that is, every finite-variance real-valued functional F of X

admits a unique representation as a series, converging in L2
X(P), of the form

F =

∞∑

q=0

F [q], (3.1)

F [q] := proj(F |Cq) being the orthogonal projection of F onto Cq (in particular, F [0] =
E[F ]). For a complete discussion on Wiener chaos see [NP12, §2.2] and the references
therein.

3.2 Nodal length: chaos expansion

Let B ⊆ S
2 be a “nice” subset of the sphere. For our purpose it suffices to take B as the

whole sphere or a spherical cap. The nodal length Lℓ,B := length(T−1
ℓ (0) ∩ B) in B at

frequency ℓ (plainly, Lℓ,S2 ≡ Lℓ) can be formally written as

Lℓ,B =

∫

B
δ0(Tℓ(x))‖∇Tℓ(x)‖ dx, (3.2)

where δ0 stands for the Dirac mass in 0, ∇Tℓ is the gradient field and ‖ · ‖ denotes the
Euclidean norm in R

2. Indeed, let us consider the ε-approximating random variable

Lε
ℓ,B :=

1

2ε

∫

B
χ[−ε,ε](Tℓ(x)) ‖∇Tℓ(x)‖ dx,

where 0 < ε ≪ 1 and χ[−ε,ε] denotes the indicator function of the interval [−ε, ε]. It is
possible to prove that

lim
ε→0

Lε
ℓ,B = length(T−1

ℓ (0) ∩B)

both P−a.s. and in L2(P), see [MRW20, NPR19], thus justifying (3.2). In particular,
Lℓ,B ∈ L2

X(P). The integral representation (3.2) can be equivalently written as

Lℓ,B =

√
ℓ(ℓ+ 1)

2

∫

B
δ0(Tℓ(x))‖∇̃Tℓ(x)‖ dx, (3.3)

8



where ∇̃ is the normalized gradient, i.e. ∇̃ := ∇/
√

2
ℓ(ℓ+1) (thus pointwise the components

of the normalized gradient have unit variance, see §3.2.1 in [MRW20] for details). Let us
now recall the chaotic expansion (3.1) for Lℓ,B

Lℓ,B =

+∞∑

q=0

Lℓ,B[2q], (3.4)

where Lℓ,B[2q] denotes the orthogonal projection of Lℓ,B onto C2q. (Note that projections on
odd chaoses vanish since the integrand functions in (3.3) are both even.) In [MRW20, §2] the
terms of the series on the right hand side of (3.4) are explicitly given (see also [MPRW16]).
Let us introduce the two sequences of real numbers {β2k}+∞

k=0 and {α2n,2m}+∞
n,m=0 corre-

sponding to the (formal) chaotic coefficients of the Dirac mass at 0 and the Euclidean norm
respectively: for k, n,m ∈ N

β2k :=
1√
2π

H2k(0), α2n,2m :=

√
π

2

(2n)!(2m)!

n!m!

1

2n+m
pn+m

(
1

4

)
,

where pN is the swinging factorial coefficient pN (x) :=
∑N

j=0(−1)N+j

(
N
j

)
(2j+1)!
(j!)2 xj,

x ∈ R. The 2q-th chaotic projection of the nodal length restricted to B is

Lℓ,B[2q] =

√
ℓ(ℓ+ 1)

2

q∑

u=0

u∑

k=0

α2k,2u−2kβ2q−2u

(2k)!(2u − 2k)!(2q − 2u)!

×
∫

B
H2q−2u(Tℓ(x))H2k(∂̃1;xTℓ(x))H2u−2k(∂̃2;xTℓ(x)) dx,

(3.5)

where we use spherical coordinates (colatitude θ, longitude ϕ) and for x = (θx, ϕx) we are
using the notation

∂̃1;x = (ℓ(ℓ+ 1)/2)−1/2 · ∂

∂θ

∣∣∣∣
θ=θx

, ∂̃2;x = (ℓ(ℓ+ 1)/2)−1/2 · 1

sin θ

∂

∂ϕ

∣∣∣∣
θ=θx,ϕ=ϕx

.

Obviously Lℓ,B[0] =
area(B)

2
√
2

√
ℓ(ℓ+ 1) = E[Lℓ,B].

3.3 Nodal lengths: reduction principles

3.3.1 On the sphere

From (3.5) for q = 1, an application of Green’s formula yields (see [MR19] and the references
therein)

Lℓ[2] = 0. (3.6)

Let us consider, as in (2.5), the sample trispectrum

Mℓ := −1

4

√
ℓ(ℓ+ 1)

2

1

4!

∫

S2

H4(Tℓ(x)) dx;

from the properties of Hermite polynomials recalled in §3.1 and by (1.4) we have

E[Mℓ] = 0, Var(Mℓ) =
1

32
log ℓ+O(1), as ℓ → +∞ (3.7)
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(see [MW14, Lemma 3.2]), cf. (1.7). Moreover, in [MRW20] it has been shown that the
fourth chaotic projection Lℓ[4] (see (3.5) for q = 2) is asymptotically (as ℓ → +∞) equiva-
lent, in the L2(P)-sense, to Mℓ, and that the tail

∑
q≥3Lℓ[2q] of the chaotic series (3.4) is

negligible. To be more precise,

E

[∣∣∣L̃ℓ − M̃ℓ

∣∣∣
2
]
= O

(
(log ℓ)−1

)
, as ℓ → +∞, (3.8)

which is (2.6). An application of the Fourth Moment Theorem [NP05, NP09] gives [MW14]

dW

(
M̃ℓ, Z

)
≤

√
Cum4(M̃ℓ) = O

(
(log ℓ)−1

)
, as ℓ → +∞,

that together with the estimate (3.8) proves (1.8).

3.3.2 On shrinking spherical domains

Let us define the local sample trispectrum as

Mℓ,Brℓ
:= −1

4

√
ℓ(ℓ+ 1)

2

1

4!

∫

Br
ℓ

H4(Tℓ(x)) dx. (3.9)

It has zero mean and variance (recall that rℓℓ → +∞) given by

Var(Mℓ,Br
ℓ
) =

1

256
r2ℓ log rℓℓ+O(r2ℓ ) (3.10)

(see [Tod20, Proposition 3.4]). In [Tod20, Proposition 3.3] the asymptotic full correlation
between the local nodal length Lℓ,Br

ℓ
and the local sample trispectrum has been established

and, in view of the orthogonality of the projections, this entails that Mℓ,Br
ℓ
is the leading

term of the chaos expansion of Lℓ,Br
ℓ
in (3.5). Indeed, all the other projections are proved

to be O(r2ℓ ) in the L2−sense (see the supplement article to [Tod20], Appendix C) and hence
we can conclude that

E

[∣∣∣L̃ℓ,Br
ℓ
− M̃ℓ,Br

ℓ

∣∣∣
2
]
= O

(
(log rℓℓ)

−1
)
. (3.11)

Hence the Fourth Moment Theorem [NP05, NP09] gives [Tod20, Lemma 5.4]

dW

(
M̃ℓ,Brℓ

, Z
)
≤

√
Cum4(M̃ℓ,Brℓ

) = O
(
(log rℓℓ)

−1/2
)

that together with the estimate (3.11) proves (1.12).

4 Proofs of the main results

4.1 Proof of Theorem 2.1

Bearing in mind §3.3.1 we start with an auxiliary lemma of independent interest which
provides the MDP for the sample trispectrum on the sphere.

Lemma 4.1. Let {aℓ, ℓ ∈ N} be any sequence of positive numbers such that, as ℓ → +∞,

aℓ → +∞, aℓ/(log ℓ)
1/7 → 0. (4.1)

Then the sequence of random variables {M̃ℓ/aℓ, ℓ ∈ N} satisfies a MDP with speed a2ℓ and
rate function I(x) = x2/2, x ∈ R.
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Proof. The random variable Mℓ belongs to the fourth Wiener chaos C4 for each ℓ ∈ N.
Recalling (3.7), from [MW14, Lemma 3.3], we have that, as ℓ → +∞, Cum4(Mℓ) ≈ 1.
Hence we have, as ℓ → +∞,

Cum4(M̃ℓ) =
Cum4(Mℓ)

Var(Mℓ)2
≈ 1

log2 ℓ
. (4.2)

Now let aℓ be a positive sequence such that, as ℓ → +∞,

aℓ → +∞, aℓ/(∆ℓ)
1/3 → 0, (4.3)

where

∆ℓ :=

(√
Cum4(M̃ℓ)

)−3/7

≈ (log ℓ)3/7. (4.4)

Note that (4.3) is equivalent to (4.1). Corollary 2 in [ST16] ensures that the sequence M̃ℓ/aℓ
satisfies a MDP with speed a2ℓ and rate function I(x) = x2/2, x ∈ R.

Remark 4.2. Our argument leads to further results, namely expansions à la Cramér-Petrov
[RSS78] for the sample trispectrum. We state here the result in a simplified form taken from
Theorem 5 (i) in [ST16]: there exist universal constants c0, c1, c2 > 0 such that for ∆ℓ ≥ c0,

0 ≤ x ≤ c1∆
1/3
ℓ (∆ℓ is defined as in (4.4)) it holds that
∣∣∣∣∣log

P(M̃ℓ ≥ x)

1−Φ(x)

∣∣∣∣∣ ≤ c2
1 + x3

∆
1/3
ℓ

,

∣∣∣∣∣log
P(M̃ℓ ≤ −x)

Φ(−x)

∣∣∣∣∣ ≤ c2
1 + x3

∆
1/3
ℓ

,

where Φ denotes the standard Gaussian cumulative distribution function. An anonymous
referee raised the interesting question whether expansions à la Cramér-Petrov hold for nodal
lengths on the sphere and in shrinking spherical domains. We leave this as a topic for future
research.

Proof of Theorem 2.1. We want to combine Theorem 1.6 and Lemma 4.1 for every
speed aℓ satisfying (2.1); note that aℓ/

√
log log ℓ → 0 implies aℓ/(log ℓ)

1/7 → 0 (see (4.1)).
In order to do so, we have to check that for every δ > 0

lim sup
ℓ→+∞

1

a2ℓ
log P(a−1

ℓ |L̃ℓ − M̃ℓ| > δ) = −∞, (4.5)

i.e., that the sequences of random variables {L̃ℓ/aℓ, ℓ ∈ N} and {M̃ℓ/aℓ, ℓ ∈ N} are expo-
nentially equivalent (Definition 1.5) at speed a2ℓ . Thanks to Markov inequality we have

P(a−1
ℓ |L̃ℓ − M̃ℓ| > δ) ≤ a−2

ℓ E[|L̃ℓ − M̃ℓ|2]
δ2

so that

lim sup
ℓ→+∞

a−2
ℓ log P(a−1

ℓ |L̃ℓ − M̃ℓ| > δ) ≤ lim sup
ℓ→+∞

a−2
ℓ log

a−2
ℓ E[|L̃ℓ − M̃ℓ|2]

δ2

= lim sup
ℓ→+∞

a−2
ℓ logE[|L̃ℓ − M̃ℓ|2].

(4.6)

Plugging (2.6) into (4.6) we get (4.5) whenever aℓ = o(
√
log log ℓ) as in (2.1).
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4.2 Proof of Theorem 2.2

Here we refer to §3.3.2 and we follow the same lines of the proof of Theorem 2.1. We first
prove the following lemma which is of independent interest.

Lemma 4.3. Let {aℓ, ℓ ∈ N} be any sequence of positive numbers such that, as ℓ → +∞,

aℓ → +∞, aℓ/(log rℓℓ)
1/14 → 0. (4.7)

Then the sequence of random variables {M̃ℓ,Brℓ
/aℓ, ℓ ∈ N} satisfies a MDP with speed a2ℓ

and rate function I(x) = x2/2, x ∈ R.

Proof. The random variable Mℓ,Brℓ
in (3.9) belongs to the fourth Wiener chaos for each

ℓ ∈ N. Recalling (3.10) and that from [Tod20, Lemma 5.4], as ℓ → +∞, Cum4(Mℓ,Brℓ
) =

O(r4ℓ log rℓℓ), we have

Cum4(M̃ℓ,Brℓ
) =

Cum4(Mℓ,Brℓ
)

Var(Mℓ,Brℓ
)2

= O

(
1

log rℓℓ

)
. (4.8)

Now let aℓ be a positive sequence such that, as ℓ → +∞,

aℓ → +∞, aℓ/(∆ℓ,rℓ)
1/3 → 0, (4.9)

where

∆−1
ℓ,rℓ

:=

(√
Cum4(M̃ℓ,Br

ℓ
)

)3/7

= O
(
(log rℓℓ)

−3/14
)
, as ℓ → +∞.

Note that (4.7) implies (4.9). It follows that, as in the proof of Lemma 4.1, Corollary 2 in

[ST16] ensures that the sequence {M̃ℓ,Br
ℓ
/aℓ, ℓ ∈ N} satisfies a MDP with speed a2ℓ and

rate function I(x) = x2/2.

Analogous results as those in Remark 4.2 hold for the sample trispectrum restricted to a
shrinking ball.

Proof of Theorem 2.2. Along the same lines of the proof of Theorem 2.1 we want
to combine Theorem 1.6 and Lemma 4.3 for every speed aℓ satisfying (2.2); note that
aℓ/

√
log log rℓℓ → 0 implies aℓ/(log rℓℓ)

1/14 → 0 (see (4.7)). To this aim, we have to check
that for every δ > 0

lim sup
ℓ→+∞

1

a2ℓ
log P(a−1

ℓ |L̃ℓ,Br
ℓ
− M̃ℓ,Br

ℓ
| > δ) = −∞. (4.10)

Applying Markov inequality we have

P(a−1
ℓ |L̃ℓ,Brℓ

− M̃ℓ,Brℓ
| > δ) ≤

a−2
ℓ E[|L̃ℓ,Brℓ

− M̃ℓ,Brℓ
|2]

δ2

and hence

lim sup
ℓ→+∞

a−2
ℓ logP(a−1

ℓ |L̃ℓ,Brℓ
− M̃ℓ,Brℓ

| > δ) ≤ lim sup
ℓ→+∞

a−2
ℓ log

a−2
ℓ E[|L̃ℓ,Brℓ

− M̃ℓ,Brℓ
|2]

δ2

= lim sup
ℓ→+∞

a−2
ℓ logE[|L̃ℓ,Br

ℓ
− M̃ℓ,Br

ℓ
|2].

(4.11)

Using (3.11) in (4.11) and taking aℓ = o(
√
log log rℓℓ), (4.10) holds.
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