We compute three-term semiclassical asymptotic expansions of counting functions and Riesz-means of the eigenvalues of the Laplacian on spheres and hemispheres, for both Dirichlet and Neumann boundary conditions. Specifically for Riesz-means we prove upper and lower bounds involving asymptotically sharp shift terms, and we extend them to domains of Sd . We also prove a Berezin–Li–Yau inequality for domains contained in the hemisphere S+2 .

Semiclassical Estimates for Eigenvalue Means of Laplacians on Spheres

Buoso D.;Luzzini P.;
2023-01-01

Abstract

We compute three-term semiclassical asymptotic expansions of counting functions and Riesz-means of the eigenvalues of the Laplacian on spheres and hemispheres, for both Dirichlet and Neumann boundary conditions. Specifically for Riesz-means we prove upper and lower bounds involving asymptotically sharp shift terms, and we extend them to domains of Sd . We also prove a Berezin–Li–Yau inequality for domains contained in the hemisphere S+2 .
File in questo prodotto:
File Dimensione Formato  
buoso, luzzini, provenzano, stubbe (2023).pdf

file disponibile agli utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 643.09 kB
Formato Adobe PDF
643.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/165002
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact