We compute three-term semiclassical asymptotic expansions of counting functions and Riesz-means of the eigenvalues of the Laplacian on spheres and hemispheres, for both Dirichlet and Neumann boundary conditions. Specifically for Riesz-means we prove upper and lower bounds involving asymptotically sharp shift terms, and we extend them to domains of Sd . We also prove a Berezin–Li–Yau inequality for domains contained in the hemisphere S+2 .
Semiclassical Estimates for Eigenvalue Means of Laplacians on Spheres
Buoso D.;Luzzini P.;
2023-01-01
Abstract
We compute three-term semiclassical asymptotic expansions of counting functions and Riesz-means of the eigenvalues of the Laplacian on spheres and hemispheres, for both Dirichlet and Neumann boundary conditions. Specifically for Riesz-means we prove upper and lower bounds involving asymptotically sharp shift terms, and we extend them to domains of Sd . We also prove a Berezin–Li–Yau inequality for domains contained in the hemisphere S+2 .File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
buoso, luzzini, provenzano, stubbe (2023).pdf
file disponibile agli utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
643.09 kB
Formato
Adobe PDF
|
643.09 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.