In recent years, 4-phenylbutyric acid (4-PBA), an FDA-approved drug, has increasingly been used as a nonspecific chemical chaperone in vitro and in vitro, but its pharmacodynamics is still not clear. In this context, we developed and validated a Liquid Chromatography–High Resolution Mass Spectrometry (LC-HRMS) method to quantify 4-PBA in NeuroBasal-A and Dulbecco’s Modified Eagle widely used cell culture media. Samples were injected on a Luna® 3 µm PFP(2) 100 Å (100 × 2.0 mm) column maintained at 40 °C. Water and methanol both with 0.1% formic acid served as mobile phases in a step gradient mode. The mass acquisition was performed by selected ion monitoring (SIM) in negative mode for a total run time of 10.5 min at a flow rate of 0.300 mL/min. The analogue 4-(4-Nitrophenyl)-Butyric Acid served as internal standard. Validation parameters were verified according to FDA and EMA guidelines. The quantification ranges from 0.38–24 µM. Inter and intraday RSDs (Relative Standard Deviations) were within 15%. The developed LC-HRMS method allowed the estimation of 4-PBA absorption and adsorption kinetics in vitro in two experimental systems: (i) 4-PBA improvement of protein synthesis in an Alzheimer’s disease astrocytic cell model; and (ii) 4-PBA reduction of endoplasmic reticulum stress in thapsigargin-treated melanoma cell lines. © 2023 by the authors.
Quantification of the Chemical Chaperone 4-Phenylbutyric Acid (4-PBA) in Cell Culture Media via LC-HRMS: Applications in Fields of Neurodegeneration and Cancer
Villani S.Primo
;Dematteis G.;Tapella L.;Gagliardi M.;Lim D.;Corazzari M.;Aprile S.
;Del Grosso E.
2023-01-01
Abstract
In recent years, 4-phenylbutyric acid (4-PBA), an FDA-approved drug, has increasingly been used as a nonspecific chemical chaperone in vitro and in vitro, but its pharmacodynamics is still not clear. In this context, we developed and validated a Liquid Chromatography–High Resolution Mass Spectrometry (LC-HRMS) method to quantify 4-PBA in NeuroBasal-A and Dulbecco’s Modified Eagle widely used cell culture media. Samples were injected on a Luna® 3 µm PFP(2) 100 Å (100 × 2.0 mm) column maintained at 40 °C. Water and methanol both with 0.1% formic acid served as mobile phases in a step gradient mode. The mass acquisition was performed by selected ion monitoring (SIM) in negative mode for a total run time of 10.5 min at a flow rate of 0.300 mL/min. The analogue 4-(4-Nitrophenyl)-Butyric Acid served as internal standard. Validation parameters were verified according to FDA and EMA guidelines. The quantification ranges from 0.38–24 µM. Inter and intraday RSDs (Relative Standard Deviations) were within 15%. The developed LC-HRMS method allowed the estimation of 4-PBA absorption and adsorption kinetics in vitro in two experimental systems: (i) 4-PBA improvement of protein synthesis in an Alzheimer’s disease astrocytic cell model; and (ii) 4-PBA reduction of endoplasmic reticulum stress in thapsigargin-treated melanoma cell lines. © 2023 by the authors.File | Dimensione | Formato | |
---|---|---|---|
Quantification-of-the-Chemical-Chaperone-4Phenylbutyric-Acid-4PBA-in-Cell-Culture-Media-via-LCHRMS-Applications-in-Fields-of-Neurodegeneration-and-CancerPharmaceuticals.pdf
file ad accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Dominio pubblico
Dimensione
2.11 MB
Formato
Adobe PDF
|
2.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.