A new visible light-induced photocatalytic protocol enabling the formation of secondary amides from electron-poor organic bromides and isocyanides was developed. In addition, the in situ interception of ketenimine intermediates with nitrogen nucleophiles such as amines, hydrazines, and TMSN3 afforded, in a one-pot two-step procedure, valuable scaffolds such as ketene aminals, pyrazolones, and tetrazoles. Mechanistic evidence confirmed a radical pathway where isocyanides acted as radical geminal acceptors generating key imidoyl radical species.
Visible-Light Photocatalytic Functionalization of Isocyanides for the Synthesis of Secondary Amides and Ketene Aminals
Tron G. C.;
2020-01-01
Abstract
A new visible light-induced photocatalytic protocol enabling the formation of secondary amides from electron-poor organic bromides and isocyanides was developed. In addition, the in situ interception of ketenimine intermediates with nitrogen nucleophiles such as amines, hydrazines, and TMSN3 afforded, in a one-pot two-step procedure, valuable scaffolds such as ketene aminals, pyrazolones, and tetrazoles. Mechanistic evidence confirmed a radical pathway where isocyanides acted as radical geminal acceptors generating key imidoyl radical species.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.