We consider the N = 2 SYM theory with gauge group SU(N) and a matter content consisting of one multiplet in the symmetric and one in the anti-symmetric representation. This conformal theory admits a large-N ’t Hooft expansion and is dual to a particular orientifold of AdS5 × S5. We analyze this gauge theory relying on the matrix model provided by localization à la Pestun. Even though this matrix model has very nontrivial interactions, by exploiting the full Lie algebra approach to the matrix integration, we show that a large class of observables can be expressed in a closed form in terms of an infinite matrix depending on the ’t Hooft coupling $lambda$. These exact expressions can be used to generate the perturbative expansions at high orders in a very efficient way, and also to study analytically the leading behavior at strong coupling. We successfully compare these predictions to a direct Monte Carlo numerical evaluation of the matrix integral and to the Padé resummations derived from very long perturbative series, that turn out to be extremely stable beyond the convergence disk |$lambda$| < $pi^2$ of the latter.

Exact results in a N=2 superconformal gauge theory at strong coupling

Alberto Lerda;
2021-01-01

Abstract

We consider the N = 2 SYM theory with gauge group SU(N) and a matter content consisting of one multiplet in the symmetric and one in the anti-symmetric representation. This conformal theory admits a large-N ’t Hooft expansion and is dual to a particular orientifold of AdS5 × S5. We analyze this gauge theory relying on the matrix model provided by localization à la Pestun. Even though this matrix model has very nontrivial interactions, by exploiting the full Lie algebra approach to the matrix integration, we show that a large class of observables can be expressed in a closed form in terms of an infinite matrix depending on the ’t Hooft coupling $lambda$. These exact expressions can be used to generate the perturbative expansions at high orders in a very efficient way, and also to study analytically the leading behavior at strong coupling. We successfully compare these predictions to a direct Monte Carlo numerical evaluation of the matrix integral and to the Padé resummations derived from very long perturbative series, that turn out to be extremely stable beyond the convergence disk |$lambda$| < $pi^2$ of the latter.
File in questo prodotto:
File Dimensione Formato  
JHEP07(2021)185.pdf

file ad accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 935.16 kB
Formato Adobe PDF
935.16 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/127649
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact