The study of the stability properties of numerical methods leads to considering linear difference equations depending on a complex parameter q. Essentially, the associated characteristic polynomial must have constant type for q ∈ ℂ-. Usually such request is proved with the help of computers. In this paper, by using the fact that the associated polynomials aresolutions of a "Legendre-type" difference equation, a complete analysis is carried out for the class of linear multistep methods having the highest possible order.

One parameter family of linear difference equations and the stability problem for the numerical solution of ODEs

ACETO L;
2006-01-01

Abstract

The study of the stability properties of numerical methods leads to considering linear difference equations depending on a complex parameter q. Essentially, the associated characteristic polynomial must have constant type for q ∈ ℂ-. Usually such request is proved with the help of computers. In this paper, by using the fact that the associated polynomials aresolutions of a "Legendre-type" difference equation, a complete analysis is carried out for the class of linear multistep methods having the highest possible order.
File in questo prodotto:
File Dimensione Formato  
ADE_2006.pdf

file disponibile solo agli amministratori

Dimensione 546.47 kB
Formato Adobe PDF
546.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
05/95570054860067114900388156963743513360

file disponibile solo agli amministratori

Descrizione: PDF-rivista
Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 546.47 kB
Formato Unknown
546.47 kB Unknown   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/126610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact