Inspired by superstring field theory, we study differential, integral, and inverse formsand their mutual relations on a supermanifold from a sheaf-theoretical point of view.In particular, the formal distributional properties of integral forms are recovered inthis scenario in a geometrical way. Further, we show how inverse forms ‘‘extend’’the ordinary de Rham complex on a supermanifold, thus providing a mathematicalfoundation of the Large Hilbert Space used in superstrings. Last, we briefly discuss howtheHodgediamondofasupermanifoldlookslike,andweexplicitlycomputeitforsuperRiemann surfaces.
Superstring field theory, superforms and supergeometry
Catenacci R.;Grassi P.;Noja S.
2020-01-01
Abstract
Inspired by superstring field theory, we study differential, integral, and inverse formsand their mutual relations on a supermanifold from a sheaf-theoretical point of view.In particular, the formal distributional properties of integral forms are recovered inthis scenario in a geometrical way. Further, we show how inverse forms ‘‘extend’’the ordinary de Rham complex on a supermanifold, thus providing a mathematicalfoundation of the Large Hilbert Space used in superstrings. Last, we briefly discuss howtheHodgediamondofasupermanifoldlookslike,andweexplicitlycomputeitforsuperRiemann surfaces.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
SuperstringFieldTheorySuperformsandSupergeometry_arXive.pdf
file disponibile solo agli amministratori
Descrizione: arXiv post-referee
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.