Plasma treatment is a widely applied, easy, fast, and highly reproducible surface modification technique. In this work powder plasma treatment was exploited to expose carboxylic groups along the backbone of a water soluble polymer. Specifically, a custom-made amphiphilic poly(ether urethane) containing Poloxamer® 407 blocks (Mw = 54,000 Da) was first synthesized and its powders were plasma treated in the presence of Acrylic Acid vapor. To maximize -COOH group exposure while preventing polymer degradation, different Ar gas flow rates (i.e., 10, 30, and 50 sccm) were investigated. Upon gas flow increase, significant polymer degradation was observed, with a 35% molecular weight reduction at 50 sccm Ar flow rate. On the other hand, the highest number of exposed carboxylic groups (5.3 × 1018 ± 5.5 × 1017 units/gpolymer) was obtained by setting gas flow at 10 sccm. Hence, a gas flow of 10 sccm turned out to be the best set-up to maximize -COOH exposure while preventing degradation phenomena. Additionally, upon plasma treatment, no detrimental effects were observed in the thermoresponsiveness of polymer aqueous solutions, which was ensured by Poloxamer® 407 blocks. Therefore, the newly developed technology here applied on an amphiphilic poly(ether urethane) could pave the way to the tailored design of a plethora of different multifunctional hydrogels.

Plasma Treatment of Polymer Powder as an Effective Tool to Functionalize Polymers: Case Study Application on an Amphiphilic Polyurethane

Cassino, Claudio;
2019-01-01

Abstract

Plasma treatment is a widely applied, easy, fast, and highly reproducible surface modification technique. In this work powder plasma treatment was exploited to expose carboxylic groups along the backbone of a water soluble polymer. Specifically, a custom-made amphiphilic poly(ether urethane) containing Poloxamer® 407 blocks (Mw = 54,000 Da) was first synthesized and its powders were plasma treated in the presence of Acrylic Acid vapor. To maximize -COOH group exposure while preventing polymer degradation, different Ar gas flow rates (i.e., 10, 30, and 50 sccm) were investigated. Upon gas flow increase, significant polymer degradation was observed, with a 35% molecular weight reduction at 50 sccm Ar flow rate. On the other hand, the highest number of exposed carboxylic groups (5.3 × 1018 ± 5.5 × 1017 units/gpolymer) was obtained by setting gas flow at 10 sccm. Hence, a gas flow of 10 sccm turned out to be the best set-up to maximize -COOH exposure while preventing degradation phenomena. Additionally, upon plasma treatment, no detrimental effects were observed in the thermoresponsiveness of polymer aqueous solutions, which was ensured by Poloxamer® 407 blocks. Therefore, the newly developed technology here applied on an amphiphilic poly(ether urethane) could pave the way to the tailored design of a plethora of different multifunctional hydrogels.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/108771
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact