Basophils and mast cells contain a peculiar class of inflammatory granules that discharge their content upon antigen-mediated crosslinking of IgE-membrane receptors. The pathways for granule biogenesis and exocytosis in these cells are still largely obscure. In this study we employed the rat basophilic leukemia (RBL)/mast cell line to verify the hypothesis that inflammatory granules share common bioactive molecules and functional properties with lysosomes. We demonstrate that inflammatory granules, as identified by the monoclonal 5G10 antibody (which recognises an integral membrane protein) or by Toluidine Blue staining, have an intralumenal acidic pH, possess lysosomal enzymes and are accessible by fluid-phase and membrane endocytosis markers. In addition, we studied the targeting, subcellular localisation and regulated secretion of the lysosomal aspartic protease cathepsin D (CD) as affected by IgE receptor stimulation in order to obtain information on the pathways for granule biogenesis and exocytosis. Stimulation with DNP-BSA of specific IgE-primed RBL cells led to a prompt release of processed forms of CD, along with other mature lysosomal hydrolases. This release could be prevented by addition of EGTA, indicating that it was dependent on extracellular calcium influx. Antigen stimulation also induced exocytosis of immature CD forms accumulated by ammonium chloride, suggesting the existence of an intermediate station in the pathway for granule biogenesis still sensitive to regulated exocytosis. The targeting of molecules to secretory granules may occur via either a mannose-6-phosphate-dependent or mannose-6-phosphate-independent pathway. We conclude that endosomes and lysosomes in basophils/mast cells can act as regulated secretory
The lysosomal protease cathepsin D is efficiently sorted to and secreted from regulated secretory compartments in the rat basophilic/mast cell line RBL
ISIDORO, Ciro
2000-01-01
Abstract
Basophils and mast cells contain a peculiar class of inflammatory granules that discharge their content upon antigen-mediated crosslinking of IgE-membrane receptors. The pathways for granule biogenesis and exocytosis in these cells are still largely obscure. In this study we employed the rat basophilic leukemia (RBL)/mast cell line to verify the hypothesis that inflammatory granules share common bioactive molecules and functional properties with lysosomes. We demonstrate that inflammatory granules, as identified by the monoclonal 5G10 antibody (which recognises an integral membrane protein) or by Toluidine Blue staining, have an intralumenal acidic pH, possess lysosomal enzymes and are accessible by fluid-phase and membrane endocytosis markers. In addition, we studied the targeting, subcellular localisation and regulated secretion of the lysosomal aspartic protease cathepsin D (CD) as affected by IgE receptor stimulation in order to obtain information on the pathways for granule biogenesis and exocytosis. Stimulation with DNP-BSA of specific IgE-primed RBL cells led to a prompt release of processed forms of CD, along with other mature lysosomal hydrolases. This release could be prevented by addition of EGTA, indicating that it was dependent on extracellular calcium influx. Antigen stimulation also induced exocytosis of immature CD forms accumulated by ammonium chloride, suggesting the existence of an intermediate station in the pathway for granule biogenesis still sensitive to regulated exocytosis. The targeting of molecules to secretory granules may occur via either a mannose-6-phosphate-dependent or mannose-6-phosphate-independent pathway. We conclude that endosomes and lysosomes in basophils/mast cells can act as regulated secretoryFile | Dimensione | Formato | |
---|---|---|---|
Dragonetti et al.pdf
file disponibile solo agli amministratori
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
445.84 kB
Formato
Adobe PDF
|
445.84 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.