In this paper we present a scheduling strategy for workstation clusters able to effectively and fairly schedule general-purpose workloads potentially made up by compute-bound, interactive, and I/O-intensive applications, that may each be sequential, client-server, or parallel. The scheduling strategy allocates resources to processes of the same parallel applications in such a way that they all get the same CPU share regardless of the level of resource contention on the respective machines, and relies on an extended i>stride scheduler to fairly allocate individual workstations. A simulation analysis carried out for a variety of workloads and operational conditions shows that our strategy (a) delivers good performance to all the applications classes composing general-purpose workloads, (b) fairly allocates resources among competing applications, and (c) outperforms alternative strategies.
Fair Scheduling of General-Purpose Workloads on Workstation Clusters
ANGLANO, Cosimo Filomeno
2002-01-01
Abstract
In this paper we present a scheduling strategy for workstation clusters able to effectively and fairly schedule general-purpose workloads potentially made up by compute-bound, interactive, and I/O-intensive applications, that may each be sequential, client-server, or parallel. The scheduling strategy allocates resources to processes of the same parallel applications in such a way that they all get the same CPU share regardless of the level of resource contention on the respective machines, and relies on an extended i>stride scheduler to fairly allocate individual workstations. A simulation analysis carried out for a variety of workloads and operational conditions shows that our strategy (a) delivers good performance to all the applications classes composing general-purpose workloads, (b) fairly allocates resources among competing applications, and (c) outperforms alternative strategies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.