Diamond-Blackfan anemia (DBA) is a rare genetic hypoplasia of erythroid progenitors characterized by mild to severe anemia and associated with congenital malformations. Clinical manifestations in DBA patients are quite variable and genetic testing has become a critical factor in establishing a diagnosis of DBA. The majority of DBA cases are due to heterozygous loss-of-function mutations in ribosomal protein (RP) genes. Causative mutations are fairly straightforward to identify in the case of large deletions and frameshift and nonsense mutations found early in a protein coding sequence, but diagnosis becomes more challenging in the case of missense mutations and small in-frame indels. Our group recently characterized the phenotype of lymphoblastoid cell lines established from DBA patients with pathogenic lesions in RPS19 and observed that defective pre-rRNA processing, a hallmark of the disease, was rescued by lentiviral vectors expressing wild-type RPS19. Here, we use this complementation assay to determine whether RPS19 variants of unknown significance are capable of rescuing pre-rRNA processing defects in these lymphoblastoid cells as a means of assessing the effects of these sequence changes on the function of the RPS19 protein. This approach will be useful in differentiating pathogenic mutations from benign polymorphisms in identifying causative genes in DBA patients.

A functional assay for the clinical annotation of genetic variants of uncertain significance in Diamond–Blackfan anemia

Aspesi, Anna
Primo
;
Betti, Marta;SCULCO, MARIKA;ACTIS, Chiara;OLGASI, CRISTINA;Ramenghi, Ugo;Santoro, Claudio;Follenzi, Antonia;Ellis, Steven R.
Co-ultimo
;
Dianzani, Irma
Co-ultimo
2018-01-01

Abstract

Diamond-Blackfan anemia (DBA) is a rare genetic hypoplasia of erythroid progenitors characterized by mild to severe anemia and associated with congenital malformations. Clinical manifestations in DBA patients are quite variable and genetic testing has become a critical factor in establishing a diagnosis of DBA. The majority of DBA cases are due to heterozygous loss-of-function mutations in ribosomal protein (RP) genes. Causative mutations are fairly straightforward to identify in the case of large deletions and frameshift and nonsense mutations found early in a protein coding sequence, but diagnosis becomes more challenging in the case of missense mutations and small in-frame indels. Our group recently characterized the phenotype of lymphoblastoid cell lines established from DBA patients with pathogenic lesions in RPS19 and observed that defective pre-rRNA processing, a hallmark of the disease, was rescued by lentiviral vectors expressing wild-type RPS19. Here, we use this complementation assay to determine whether RPS19 variants of unknown significance are capable of rescuing pre-rRNA processing defects in these lymphoblastoid cells as a means of assessing the effects of these sequence changes on the function of the RPS19 protein. This approach will be useful in differentiating pathogenic mutations from benign polymorphisms in identifying causative genes in DBA patients.
File in questo prodotto:
File Dimensione Formato  
HUMU-39-1102 Aspesi18.pdf

file ad accesso aperto

Descrizione: Articolo
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 997.23 kB
Formato Adobe PDF
997.23 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/97595
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact