Whole body magnetic resonance imaging (MRI) with diffusion-weighted imaging (WB-MRI-DWI) is currently emerging as a diagnostic technique in the evaluation of bone metastases from breast, prostate, lung, thyroid, and melanoma tumors. The most relevant articles regarding the detection of solid tumor bone metastases with MRI have been reviewed and cited. The imaging methods currently used in the detection of bone metastases are bone scintigraphy, computed tomography (CT), and positron emission tomography (PET/CT) with 2-deoxy-2-[fluorine-18] fluoro-d-glucose (18F-FDG PET/CT). WB-MRI-DWI allows qualitative and quantitative evaluation of focal lesions through signal intensity evaluation on DWI images and the reconstruction of the apparent diffusion coefficient (ADC) map. In prostate and breast cancer, WB-MRI-DWI is useful in assessing the response of bone lesions to therapy and to detecting early non-responders, while in lung cancer the method shows a similar sensitivity to 18F-FDG PET/CT in the detection of bone metastases. In bone metastases of thyroid tumors and melanoma, the WB-MRI-DWI shows a higher sensitivity when compared to 18F-FDG PET/CT. With a standardization of the WB-MRI-DWI protocol, this method seems to play an important role in the diagnosis of bone solid tumor metastases.
Whole-Body MRI with Diffusion-Weighted Imaging in Bone Metastases: A Narrative Review
Stecco, Alessandro;Carriero, Alessandro
2018-01-01
Abstract
Whole body magnetic resonance imaging (MRI) with diffusion-weighted imaging (WB-MRI-DWI) is currently emerging as a diagnostic technique in the evaluation of bone metastases from breast, prostate, lung, thyroid, and melanoma tumors. The most relevant articles regarding the detection of solid tumor bone metastases with MRI have been reviewed and cited. The imaging methods currently used in the detection of bone metastases are bone scintigraphy, computed tomography (CT), and positron emission tomography (PET/CT) with 2-deoxy-2-[fluorine-18] fluoro-d-glucose (18F-FDG PET/CT). WB-MRI-DWI allows qualitative and quantitative evaluation of focal lesions through signal intensity evaluation on DWI images and the reconstruction of the apparent diffusion coefficient (ADC) map. In prostate and breast cancer, WB-MRI-DWI is useful in assessing the response of bone lesions to therapy and to detecting early non-responders, while in lung cancer the method shows a similar sensitivity to 18F-FDG PET/CT in the detection of bone metastases. In bone metastases of thyroid tumors and melanoma, the WB-MRI-DWI shows a higher sensitivity when compared to 18F-FDG PET/CT. With a standardization of the WB-MRI-DWI protocol, this method seems to play an important role in the diagnosis of bone solid tumor metastases.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.