Cannabinoids have been shown to exert neuroprotective effects in a plethora of neurodegenerative conditions. Over the past decade, some studies demonstrate that cannabinoids can interact with nuclear peroxisome proliferator-activated receptors (PPARs). We investigated protective properties of WIN55212-2 (WIN, a non-selective cannabinoid receptor agonist) in beta-amyloid (Aβ)-induced neurodegeneration in rat hippocampus and possible involvement of PPAR-gamma (PPAR-γ). Aβ (1-42) was injected into the hippocampus of male rats. Animals were administered by intracerebroventricular rout the following treatments on days 1, 3, 5, 7: vehicle, WIN, GW9662 (selective PPAR-γ antagonist) plus WIN, AM251 (selective CB₁ receptor antagonist) plus WIN, SR144528 (selective CB₂ receptor antagonist) plus WIN, each of antagonists alone. Injection of Aβ-induced spatial memory impairment and a dramatic rise in hippocampal TNF-α, active caspase 3, nuclear NF-kB levels and TUNEL-positive neurons. WIN administration significantly improved memory function and diminished the elevated levels of these markers, while antagonizing either CB₁ or CB₂ receptor subtype partially attenuated the protective effects. Intriguingly, WIN significantly increased PPAR-γ level and transcriptional activity, the latter being partially inhibited with AM251 but not with SR144528. The enhancing effect on PPAR-γ pathway was crucial to WIN-induced neuroprotection since GW9662 partially reversed the beneficial actions of WIN. Co-administration of the three antagonists led to the complete abrogation of WIN effects. Our findings indicate that WIN exerts neuroprotective and anti-inflammatory actions against Aβ damage through both CB₁ and CB₂ receptors. Of great note, both direct and CB₁-mediated increase in PPAR-γ signaling also contributes to WIN-induced neuroprotection.

WIN55212-2 attenuates amyloid-beta-induced neuroinflammation in rats through activation of cannabinoid receptors and PPAR-γ pathway

Grolla A
Membro del Collaboration Group
;
2012-01-01

Abstract

Cannabinoids have been shown to exert neuroprotective effects in a plethora of neurodegenerative conditions. Over the past decade, some studies demonstrate that cannabinoids can interact with nuclear peroxisome proliferator-activated receptors (PPARs). We investigated protective properties of WIN55212-2 (WIN, a non-selective cannabinoid receptor agonist) in beta-amyloid (Aβ)-induced neurodegeneration in rat hippocampus and possible involvement of PPAR-gamma (PPAR-γ). Aβ (1-42) was injected into the hippocampus of male rats. Animals were administered by intracerebroventricular rout the following treatments on days 1, 3, 5, 7: vehicle, WIN, GW9662 (selective PPAR-γ antagonist) plus WIN, AM251 (selective CB₁ receptor antagonist) plus WIN, SR144528 (selective CB₂ receptor antagonist) plus WIN, each of antagonists alone. Injection of Aβ-induced spatial memory impairment and a dramatic rise in hippocampal TNF-α, active caspase 3, nuclear NF-kB levels and TUNEL-positive neurons. WIN administration significantly improved memory function and diminished the elevated levels of these markers, while antagonizing either CB₁ or CB₂ receptor subtype partially attenuated the protective effects. Intriguingly, WIN significantly increased PPAR-γ level and transcriptional activity, the latter being partially inhibited with AM251 but not with SR144528. The enhancing effect on PPAR-γ pathway was crucial to WIN-induced neuroprotection since GW9662 partially reversed the beneficial actions of WIN. Co-administration of the three antagonists led to the complete abrogation of WIN effects. Our findings indicate that WIN exerts neuroprotective and anti-inflammatory actions against Aβ damage through both CB₁ and CB₂ receptors. Of great note, both direct and CB₁-mediated increase in PPAR-γ signaling also contributes to WIN-induced neuroprotection.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/95268
Citazioni
  • ???jsp.display-item.citation.pmc??? 36
  • Scopus 104
  • ???jsp.display-item.citation.isi??? 95
social impact