Confinement-driven self-assembly of dyes in nanomatrices is an effective route for the production of hybrid supramolecular structures of high technological relevance, among which the archetypal zeolite L based systems are exploited in Förster resonance energy transfer (FRET) sensitized solar cells, luminescent solar concentrators, and color-changing media but also in sensing in analytical chemistry, biology, and diagnostics. Despite this progress in applications, the organization of confined chromophores in zeolite L materials remains elusive. Herein, by integrating experiments with different time scale and radiation source (IR, XRPD, total scattering) with first-principles DFT modeling, we attained a microscopically detailed picture of a technologically important hybrid composite of zeolite L with a perylene−diimide (also known as perylene−bisimide) dye at both hydrated and anhydrous conditions. The asymmetric positioning of the dye in the zeolite channel is determined by two factors: shapevolume constraints, and relative strength of competitive interactions among confined species. Our multitechnique experimental-theoretical approach thoroughly described the supramolecular chemistry of this hybrid material, identifiying possible strategies to further enhance FRET efficiency and improve functionality. This work deepens the understanding of host−guest interactions in dye−zeolite L composites, a key requirement to master the finely tuned mechanisms governing supramolecular organization in confined nanospaces.
Structure and Host-Guest Interactions of Perylene-Diimide Dyes in Zeolite L Nanochannels
Miletto, Ivana;
2018-01-01
Abstract
Confinement-driven self-assembly of dyes in nanomatrices is an effective route for the production of hybrid supramolecular structures of high technological relevance, among which the archetypal zeolite L based systems are exploited in Förster resonance energy transfer (FRET) sensitized solar cells, luminescent solar concentrators, and color-changing media but also in sensing in analytical chemistry, biology, and diagnostics. Despite this progress in applications, the organization of confined chromophores in zeolite L materials remains elusive. Herein, by integrating experiments with different time scale and radiation source (IR, XRPD, total scattering) with first-principles DFT modeling, we attained a microscopically detailed picture of a technologically important hybrid composite of zeolite L with a perylene−diimide (also known as perylene−bisimide) dye at both hydrated and anhydrous conditions. The asymmetric positioning of the dye in the zeolite channel is determined by two factors: shapevolume constraints, and relative strength of competitive interactions among confined species. Our multitechnique experimental-theoretical approach thoroughly described the supramolecular chemistry of this hybrid material, identifiying possible strategies to further enhance FRET efficiency and improve functionality. This work deepens the understanding of host−guest interactions in dye−zeolite L composites, a key requirement to master the finely tuned mechanisms governing supramolecular organization in confined nanospaces.File | Dimensione | Formato | |
---|---|---|---|
acs.jpcc.7b10607.pdf
file disponibile solo agli amministratori
Tipologia:
Altro materiale allegato
Licenza:
DRM non definito
Dimensione
5.81 MB
Formato
Adobe PDF
|
5.81 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.