Several studies have documented the ability of flavonoids to sensitize cancer cells to chemotherapeutics and reverse multidrug resistance by inhibition of efflux pumps (adenosine triphosphate-binding cassette transporters), apoptosis activation, and cell cycle arrest. In this study, the flavonoid rutin (quercetin 3-O-β-d-rutinoside) was investigated as chemosensitizer towards two different human epithelial breast cancer cell lines: (i) MB-MDA-231, selected as representative for triple-negative breast cancer and (ii) MCF-7 used as a well-characterized model of HER2-negative breast cancer. To assess the cytocompatibility of rutin against non-cancer cells, primary human mammary fibroblasts were used as control and non-target cells. In MDA-MB-231 cells, 20 μM rutin enhanced cytotoxicity related to cyclophosphamide and methotrexate. Rutin significantly (p < 0.05) increased the anticancer activity of both chemotherapeutics, at 24-48-72 h, and decreased the activity of the adenosine triphosphate-binding cassette transporters, namely, P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). Flow cytometry analysis showed 20 μM and 50 μM rutin arrested cell cycle at G2/M and G0/G1 phases, respectively, significantly promoting cell apoptosis. Rutin, via non-selective inhibition of P-gp and BCRP pumps, efficiently reverses multidrug resistance and restores chemosensitivity to cyclophosphamide and cyclophosphamide of human chemoresistant, triple-negative breast cancer cells, successfully arresting cell cycle progression.

Rutin, a Quercetin Glycoside, Restores Chemosensitivity in Human Breast Cancer Cells

Cochis, Andrea
Secondo
;
Sorrentino, Rita;Varoni, Elena M.;Azzimonti, Barbara;Rimondini, Lia
Co-ultimo
;
2017-01-01

Abstract

Several studies have documented the ability of flavonoids to sensitize cancer cells to chemotherapeutics and reverse multidrug resistance by inhibition of efflux pumps (adenosine triphosphate-binding cassette transporters), apoptosis activation, and cell cycle arrest. In this study, the flavonoid rutin (quercetin 3-O-β-d-rutinoside) was investigated as chemosensitizer towards two different human epithelial breast cancer cell lines: (i) MB-MDA-231, selected as representative for triple-negative breast cancer and (ii) MCF-7 used as a well-characterized model of HER2-negative breast cancer. To assess the cytocompatibility of rutin against non-cancer cells, primary human mammary fibroblasts were used as control and non-target cells. In MDA-MB-231 cells, 20 μM rutin enhanced cytotoxicity related to cyclophosphamide and methotrexate. Rutin significantly (p < 0.05) increased the anticancer activity of both chemotherapeutics, at 24-48-72 h, and decreased the activity of the adenosine triphosphate-binding cassette transporters, namely, P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). Flow cytometry analysis showed 20 μM and 50 μM rutin arrested cell cycle at G2/M and G0/G1 phases, respectively, significantly promoting cell apoptosis. Rutin, via non-selective inhibition of P-gp and BCRP pumps, efficiently reverses multidrug resistance and restores chemosensitivity to cyclophosphamide and cyclophosphamide of human chemoresistant, triple-negative breast cancer cells, successfully arresting cell cycle progression.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/94161
Citazioni
  • ???jsp.display-item.citation.pmc??? 45
  • Scopus 141
  • ???jsp.display-item.citation.isi??? 120
social impact