The anatomical distribution of somatostatin‐immunoreactive structures and the autoradiographic localization of somatostatin binding sites were investigated in the brain of the African lungfish, Protopterus annectens. In general, there was a good correlation between the distribution of somatostatin‐immunoreactive elements and the location of somatostatin binding sites in several areas of the brain, particularly in the anterior olfactory nucleus, the rostral part of the dorsal pallium, the medial subpallium, the anterior preoptic area, the tectum, and the tegmentum of the mesencephalon. However, mismatching was found in the mid‐caudal dorsal pallium, the reticular formation, and the cerebellum, which contained moderate to high concentrations of binding sites and very low densities of immunoreactive fibers. In contrast, the caudal hypothalamus and the neural lobe of the pituitary exhibited low concentrations of binding sites and a high to moderate density of somatostatin‐immunoreactive fibers. The present results provide the first localization of somatostatin in the brain of a dipnoan and the first anatomical distribution of somatostatin binding sites in the brain of a fish. The location of somatostatin‐immunoreactive elements in the brain of P. annectens is consistent with that reported in anuran amphibians, suggesting that the general organization of the somatostatin peptidergic systems occurred in a common ancestor of dipnoans and tetrapods. The anatomical distribution of somatostatin‐immunoreactive elements and somatostatin binding sites suggests that somatostatin acts as a hypophysiotropic neurohormone as well as a neurotransmitter and/or neuromodulator in the lungfish brain.

Immunocytochemical localization of Somatostatin and autoradiographic distribution of Somatostatin binding sites in the brain of the African lungfish, Protopterus annectens

MASINI, MARIA ANGELA
Membro del Collaboration Group
;
1997-01-01

Abstract

The anatomical distribution of somatostatin‐immunoreactive structures and the autoradiographic localization of somatostatin binding sites were investigated in the brain of the African lungfish, Protopterus annectens. In general, there was a good correlation between the distribution of somatostatin‐immunoreactive elements and the location of somatostatin binding sites in several areas of the brain, particularly in the anterior olfactory nucleus, the rostral part of the dorsal pallium, the medial subpallium, the anterior preoptic area, the tectum, and the tegmentum of the mesencephalon. However, mismatching was found in the mid‐caudal dorsal pallium, the reticular formation, and the cerebellum, which contained moderate to high concentrations of binding sites and very low densities of immunoreactive fibers. In contrast, the caudal hypothalamus and the neural lobe of the pituitary exhibited low concentrations of binding sites and a high to moderate density of somatostatin‐immunoreactive fibers. The present results provide the first localization of somatostatin in the brain of a dipnoan and the first anatomical distribution of somatostatin binding sites in the brain of a fish. The location of somatostatin‐immunoreactive elements in the brain of P. annectens is consistent with that reported in anuran amphibians, suggesting that the general organization of the somatostatin peptidergic systems occurred in a common ancestor of dipnoans and tetrapods. The anatomical distribution of somatostatin‐immunoreactive elements and somatostatin binding sites suggests that somatostatin acts as a hypophysiotropic neurohormone as well as a neurotransmitter and/or neuromodulator in the lungfish brain.
File in questo prodotto:
File Dimensione Formato  
Vallarino_et_al-1997-Journal_of_Comparative_Neurology.pdf

file disponibile agli utenti autorizzati

Descrizione: articolo
Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 994.16 kB
Formato Adobe PDF
994.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/90677
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 26
social impact