Oxidation of [Pt(II)Cl(terpy)]+ (terpy = 2,2′:6′,2′′-terpyridine) has been attempted with several oxidizing agents and under different experimental conditions in order to obtain a Pt(IV) complex suitable for the conjugation to nanovectors to be used in drug delivery targeting for anticancer therapy. The best compromise in terms of yield and purity of the final complex was obtained by microwave-assisted reaction at 70 °C in 50% aqueous H2O2 for 2 h. Under these conditions the quantitative formation of [Pt(IV)Cl(OH)2(terpy)]+ was observed. The subsequent synthetic steps were, (i) functionalization of [Pt(IV)Cl(OH)2(terpy)]+ in the axial position with succinic anhydride to obtain [Pt(IV)Cl(OH)(succinato)(terpy)]+ and (ii) reaction of the latter with nonporous silica nanoparticles (SNPs) with an external shell containing primary amino groups to obtain a nanovector able to transport the Pt(IV) antitumor prodrug in the form of a conjugate Pt-SNP. Finally, the antiproliferative activity and cell accumulation of [Pt(II)Cl(terpy)]+, [Pt(IV)Cl(OH)2(terpy)]+, and the Pt-SNP conjugate were measured on three cancer cell lines. Despite highly effective accumulation of Pt-SNP in cells, a modest increase in activity was observed with respect to the molecular species. Further experiments showed that the Pt-SNP conjugate can release [Pt(II)Cl(terpy)]+ upon reduction, but this metabolite may undergo hydrolysis, and the resulting aquo complex could coordinate once again the free amino groups of the SNPs. In the resulting tetraamine form, the Pt(ii) complex conjugated to the SNPs cannot completely perform its antiproliferative activity. © 2017 The Royal Society of Chemistry.
How to obtain Pt(IV) complexes suitable for conjugation to nanovectors from the oxidation of [PtCl(terpyridine)]+
GABANO, Elisabetta;PERIN, ELENA;GALLINA, Andrea;RANGONE, BEATRICE;RAVERA, Mauro
2017-01-01
Abstract
Oxidation of [Pt(II)Cl(terpy)]+ (terpy = 2,2′:6′,2′′-terpyridine) has been attempted with several oxidizing agents and under different experimental conditions in order to obtain a Pt(IV) complex suitable for the conjugation to nanovectors to be used in drug delivery targeting for anticancer therapy. The best compromise in terms of yield and purity of the final complex was obtained by microwave-assisted reaction at 70 °C in 50% aqueous H2O2 for 2 h. Under these conditions the quantitative formation of [Pt(IV)Cl(OH)2(terpy)]+ was observed. The subsequent synthetic steps were, (i) functionalization of [Pt(IV)Cl(OH)2(terpy)]+ in the axial position with succinic anhydride to obtain [Pt(IV)Cl(OH)(succinato)(terpy)]+ and (ii) reaction of the latter with nonporous silica nanoparticles (SNPs) with an external shell containing primary amino groups to obtain a nanovector able to transport the Pt(IV) antitumor prodrug in the form of a conjugate Pt-SNP. Finally, the antiproliferative activity and cell accumulation of [Pt(II)Cl(terpy)]+, [Pt(IV)Cl(OH)2(terpy)]+, and the Pt-SNP conjugate were measured on three cancer cell lines. Despite highly effective accumulation of Pt-SNP in cells, a modest increase in activity was observed with respect to the molecular species. Further experiments showed that the Pt-SNP conjugate can release [Pt(II)Cl(terpy)]+ upon reduction, but this metabolite may undergo hydrolysis, and the resulting aquo complex could coordinate once again the free amino groups of the SNPs. In the resulting tetraamine form, the Pt(ii) complex conjugated to the SNPs cannot completely perform its antiproliferative activity. © 2017 The Royal Society of Chemistry.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.