Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) is the procedure of choice for the cytologic diagnosis of pancreatic masses. The specificity of EUS-FNA approaches 100%, but the sensitivity is still low, and the high rate of indeterminate (atypical and suspicious) and false-negative results needs improvement. KRAS gene is frequently mutated in pancreatic ductal adenocarcinoma (PDAC) (up to 90%), and mutation analysis of KRAS has been proposed as diagnostic biomarker of PDAC. In most laboratories, KRAS mutation testing is performed by Sanger sequencing or real time-quantitative polymerase chain reaction (RT-qPCR), but these methods may give false-negative results in routine samples, mainly due to low cellularity. In order to increase the sensitivity of EUS-FNA, we propose a sequential approach for detecting KRAS mutations using mutant enriched-PCR (ME-PCR, sensitivity up to 0.1%) in cytologically indeterminate and negative samples tested wild-type by RT-qPCR. EUS-FNA specimens from 107 patients with pancreatic masses (51 males, 56 females, mean age 67 years) were cytologically examined. According to the Papanicolaou Society of Cytopathology guidelines, 50 cases (47%) were classified malignant, 15 (14%) suspicious, 13 (12%) atypical and 10 (9%) negative for malignancy; 18 cases (17%) were non-diagnostic. The overall specificity and sensitivity of cytological examination were 100% and 61%, respectively, when only negative and positive cases were considered; when atypical and suspicious were added to positive cases, the sensitivity increased to 95.1% and the specificity decreased to 85.7%. In all the cases, DNA was extracted from the cell-block and KRAS mutations were investigated by RT-qPCR, followed by ME-PCR in non-amplifiable and negative cases. The overall sensitivity and specificity of KRAS mutation testing alone were 79.3% and 100%; when KRAS mutation testing was performed in indeterminate and negative cytology, the sensitivity increased to 90% with specificity to 100%. Our data indicate that conventional cytology from EUS-FNA samples is highly specific for the diagnosis of pancreatic cancer. Indeterminate and negative cases need to be screened for KRAS mutations; this two-step approach may greatly improve the diagnostic accuracy of this method.
KRAS mutation testing on all non-malignant diagnosis of pancreatic endoscopic ultrasound-guided fine-needle aspiration biopsies improves diagnostic accuracy
TRISOLINI, ELENA;BOZZOLA, Cristina;PIZIO, Corinna;MANCUSO, GIUSEPPE;ANDORNO, Silvano;BOLDORINI, Renzo Luciano
2017-01-01
Abstract
Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) is the procedure of choice for the cytologic diagnosis of pancreatic masses. The specificity of EUS-FNA approaches 100%, but the sensitivity is still low, and the high rate of indeterminate (atypical and suspicious) and false-negative results needs improvement. KRAS gene is frequently mutated in pancreatic ductal adenocarcinoma (PDAC) (up to 90%), and mutation analysis of KRAS has been proposed as diagnostic biomarker of PDAC. In most laboratories, KRAS mutation testing is performed by Sanger sequencing or real time-quantitative polymerase chain reaction (RT-qPCR), but these methods may give false-negative results in routine samples, mainly due to low cellularity. In order to increase the sensitivity of EUS-FNA, we propose a sequential approach for detecting KRAS mutations using mutant enriched-PCR (ME-PCR, sensitivity up to 0.1%) in cytologically indeterminate and negative samples tested wild-type by RT-qPCR. EUS-FNA specimens from 107 patients with pancreatic masses (51 males, 56 females, mean age 67 years) were cytologically examined. According to the Papanicolaou Society of Cytopathology guidelines, 50 cases (47%) were classified malignant, 15 (14%) suspicious, 13 (12%) atypical and 10 (9%) negative for malignancy; 18 cases (17%) were non-diagnostic. The overall specificity and sensitivity of cytological examination were 100% and 61%, respectively, when only negative and positive cases were considered; when atypical and suspicious were added to positive cases, the sensitivity increased to 95.1% and the specificity decreased to 85.7%. In all the cases, DNA was extracted from the cell-block and KRAS mutations were investigated by RT-qPCR, followed by ME-PCR in non-amplifiable and negative cases. The overall sensitivity and specificity of KRAS mutation testing alone were 79.3% and 100%; when KRAS mutation testing was performed in indeterminate and negative cytology, the sensitivity increased to 90% with specificity to 100%. Our data indicate that conventional cytology from EUS-FNA samples is highly specific for the diagnosis of pancreatic cancer. Indeterminate and negative cases need to be screened for KRAS mutations; this two-step approach may greatly improve the diagnostic accuracy of this method.File | Dimensione | Formato | |
---|---|---|---|
KRAS mutation testing on all non-malignant diagnosis of pancreatic endoscopic ultrasound-guided fine-needle aspiration biopsies improves diagnostic accuracy - T.pdf
file disponibile agli utenti autorizzati
Licenza:
DRM non definito
Dimensione
1.39 MB
Formato
Adobe PDF
|
1.39 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.