The pathogenicity of Mycobacterium ulcerans (Buruli ulcer) is closely associated with the secretion of exotoxin mycolactone. The cytotoxicity of mycolactone has been linked to its apoptogenic activity. We explored if low mycolactone concentrations, which are not able to induce apoptosis, can influence other essential activities on two primary human keratinocyte populations, keratinocyte stem cells (KSC) and transit amplifying cells (TAC), and on a human keratinocyte line, HaCaT. We demonstrated that 0.01 and 0.1 ng/ml mycolactone A/B are not able to induce apoptosis in primary human keratinocytes, but interfere with KSC wound repair. Moreover, the same toxin concentrations reduce cell proliferation of KSC and TAC and their ability to adhere to type IV collagen. HaCaT cells are more resistant to the toxin; nevertheless, they show a delayed woud repair when treated with 1 and 10 ng/ml mycolactone A/B. Moreover, these sub-apoptotic concentrations affect their ability to proliferate and adhere to collagen IV. Wound healing is a complex mechanism, which occurs "in vivo" as the outcome of many co-ordinated events. Sub-apoptotic mycolactone concentrations can affect essential mechanisms, which are required to achieve wound repair, such as adhesion, migration and proliferation of human keratinocytes.

Mycobacterium ulcerans mycolactone interferes with adhesion, migration and proliferation of primary human keratinocytes and HaCaT cell line

BOZZO, Chiarella
2017-01-01

Abstract

The pathogenicity of Mycobacterium ulcerans (Buruli ulcer) is closely associated with the secretion of exotoxin mycolactone. The cytotoxicity of mycolactone has been linked to its apoptogenic activity. We explored if low mycolactone concentrations, which are not able to induce apoptosis, can influence other essential activities on two primary human keratinocyte populations, keratinocyte stem cells (KSC) and transit amplifying cells (TAC), and on a human keratinocyte line, HaCaT. We demonstrated that 0.01 and 0.1 ng/ml mycolactone A/B are not able to induce apoptosis in primary human keratinocytes, but interfere with KSC wound repair. Moreover, the same toxin concentrations reduce cell proliferation of KSC and TAC and their ability to adhere to type IV collagen. HaCaT cells are more resistant to the toxin; nevertheless, they show a delayed woud repair when treated with 1 and 10 ng/ml mycolactone A/B. Moreover, these sub-apoptotic concentrations affect their ability to proliferate and adhere to collagen IV. Wound healing is a complex mechanism, which occurs "in vivo" as the outcome of many co-ordinated events. Sub-apoptotic mycolactone concentrations can affect essential mechanisms, which are required to achieve wound repair, such as adhesion, migration and proliferation of human keratinocytes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/82178
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact