BACKGROUND: Autophagy inhibits survival of intracellular Mycobacterium tuberculosis when induced by rapamycin or interferon γ (IFN-γ), but it remains unclear whether M. tuberculosis itself can induce autophagy and whether T cells play a role in M. tuberculosis-mediated autophagy. The aim of this study was to evaluate the impact of M. tuberculosis on autophagy in human primary macrophages and the role of specific T cells in this process. METHODS: M. tuberculosis (H37Rv)-infected macrophages were incubated with naive or M. tuberculosis-specific T cells. Autophagy was evaluated at 4 hours and 8 hours after infection by analyzing the levels of LC3-II (a hallmark of autophagy) and p62 (a protein degraded by autophagy). M. tuberculosis survival was evaluated by counting the colony-forming units. RESULTS: M. tuberculosis infection of macrophages inhibited the autophagic process at 8 hours after infection. Naive T cells could not rescue this block, whereas M. tuberculosis-specific T cells restored autophagy degradation, accompanied by enhanced bacterial killing. Notably, the effect of M. tuberculosis-specific T cells was not affected by neutralization of endogenous IFN-γ and tumor necrosis factor α and was blocked by preventing contact between macrophages and T cells, suggesting that cell-cell interaction is crucial. CONCLUSIONS: M. tuberculosis inhibits autophagy in human primary macrophages, and specific T cells can restore functional autophagic flux through cell-cell contact.

Autophagy inhibits survival of intracellular Mycobacterium tuberculosis when induced by rapamycin or interferon γ (IFN-γ), but it remains unclear whether M. tuberculosis itself can induce autophagy and whether T cells play a role in M. tuberculosis-mediated autophagy. The aim of this study was to evaluate the impact of M. tuberculosis on autophagy in human primary macrophages and the role of specific T cells in this process.

Specific T cells restore the autophagic flux inhibited by Mycobacterium tuberculosis in human primary macrophages

CORAZZARI, MARCO;
2012-01-01

Abstract

Autophagy inhibits survival of intracellular Mycobacterium tuberculosis when induced by rapamycin or interferon γ (IFN-γ), but it remains unclear whether M. tuberculosis itself can induce autophagy and whether T cells play a role in M. tuberculosis-mediated autophagy. The aim of this study was to evaluate the impact of M. tuberculosis on autophagy in human primary macrophages and the role of specific T cells in this process.
2012
BACKGROUND: Autophagy inhibits survival of intracellular Mycobacterium tuberculosis when induced by rapamycin or interferon γ (IFN-γ), but it remains unclear whether M. tuberculosis itself can induce autophagy and whether T cells play a role in M. tuberculosis-mediated autophagy. The aim of this study was to evaluate the impact of M. tuberculosis on autophagy in human primary macrophages and the role of specific T cells in this process. METHODS: M. tuberculosis (H37Rv)-infected macrophages were incubated with naive or M. tuberculosis-specific T cells. Autophagy was evaluated at 4 hours and 8 hours after infection by analyzing the levels of LC3-II (a hallmark of autophagy) and p62 (a protein degraded by autophagy). M. tuberculosis survival was evaluated by counting the colony-forming units. RESULTS: M. tuberculosis infection of macrophages inhibited the autophagic process at 8 hours after infection. Naive T cells could not rescue this block, whereas M. tuberculosis-specific T cells restored autophagy degradation, accompanied by enhanced bacterial killing. Notably, the effect of M. tuberculosis-specific T cells was not affected by neutralization of endogenous IFN-γ and tumor necrosis factor α and was blocked by preventing contact between macrophages and T cells, suggesting that cell-cell interaction is crucial. CONCLUSIONS: M. tuberculosis inhibits autophagy in human primary macrophages, and specific T cells can restore functional autophagic flux through cell-cell contact.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/80793
Citazioni
  • ???jsp.display-item.citation.pmc??? 27
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 38
social impact