The epithelial-to-mesenchymal transition (EMT) is a crucial process, occurring both during development and tumor progression, by which an epithelial cell undergoes a conversion to a mesenchymal phenotype, dissociates from initial contacts and migrates to secondary sites. We recently reported that in hepatocytes the multifunctional cytokine TGFbeta induces a full EMT characterized by (i) Snail induction, (ii) E-cadherin delocalization and down-regulation, (iii) down-regulation of the hepatocyte transcriptional factor HNF4alpha and (iv) up-regulation of mesenchymal and invasiveness markers. In particular, we showed that Snail directly causes the transcriptional down-regulation of E-cadherin and HNF4, while it is not sufficient for the up-regulation of mesenchymal and invasiveness EMT markers. In this paper, we show that in hepatocytes TGFbeta induces a Src-dependent activation of the focal adhesion protein FAK. More relevantly, we gathered results indicating that FAK signaling is required for (i) transcriptional up-regulation of mesenchymal and invasiveness markers and (ii) delocalization of membrane-bound E-cadherin. Our results provide the first evidence of FAK functional role in TGFbeta-mediated EMT in hepatocytes.
TGFb-induced EMT requires Focal Adhesion Kinase (FAK) signalling
CORAZZARI, MARCO;
2008-01-01
Abstract
The epithelial-to-mesenchymal transition (EMT) is a crucial process, occurring both during development and tumor progression, by which an epithelial cell undergoes a conversion to a mesenchymal phenotype, dissociates from initial contacts and migrates to secondary sites. We recently reported that in hepatocytes the multifunctional cytokine TGFbeta induces a full EMT characterized by (i) Snail induction, (ii) E-cadherin delocalization and down-regulation, (iii) down-regulation of the hepatocyte transcriptional factor HNF4alpha and (iv) up-regulation of mesenchymal and invasiveness markers. In particular, we showed that Snail directly causes the transcriptional down-regulation of E-cadherin and HNF4, while it is not sufficient for the up-regulation of mesenchymal and invasiveness EMT markers. In this paper, we show that in hepatocytes TGFbeta induces a Src-dependent activation of the focal adhesion protein FAK. More relevantly, we gathered results indicating that FAK signaling is required for (i) transcriptional up-regulation of mesenchymal and invasiveness markers and (ii) delocalization of membrane-bound E-cadherin. Our results provide the first evidence of FAK functional role in TGFbeta-mediated EMT in hepatocytes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.