Synthetic retinoids such as fenretinide [N-(4-hydroxyphenyl)retinamide] induce apoptosis of neuroblastoma cells, act synergistically with chemotherapeutic drugs, and may provide opportunities for novel approaches to neuroblastoma therapy. Fenretinide-induced cell death of neuroblastoma cells is caspase dependent and results in the release of cytochrome c from mitochondria independently of changes in permeability transition. This is mediated by a signaling pathway characterized by the generation of reactive oxygen species (ROS) via 12-lipoxygenase (12-LOX), and an oxidative-stress-dependent induction of the transcription factor, GADD153 and the BCL2-related protein BAK. Upstream events of fenretinide-induced signaling involve increased levels of ceramide as a result of increased sphingomyelinase activity, and the subsequent metabolism of ceramide to gangliosides via glucosylceramide synthase and GD3 synthase. These gangliosides may be involved in the regulation of 12-LOX leading to oxidative stress and apoptosis via the induction of GADD153 and BAK. The targeting of sphingomyelinases or downstream effectors such as 12-LOX or GADD153 may present novel approaches for the development of more effective and selective drugs for neuroblastoma therapy.

Molecular mechanisms of fenretinide-induced apoptosis of neuroblastoma

CORAZZARI, MARCO;
2004-01-01

Abstract

Synthetic retinoids such as fenretinide [N-(4-hydroxyphenyl)retinamide] induce apoptosis of neuroblastoma cells, act synergistically with chemotherapeutic drugs, and may provide opportunities for novel approaches to neuroblastoma therapy. Fenretinide-induced cell death of neuroblastoma cells is caspase dependent and results in the release of cytochrome c from mitochondria independently of changes in permeability transition. This is mediated by a signaling pathway characterized by the generation of reactive oxygen species (ROS) via 12-lipoxygenase (12-LOX), and an oxidative-stress-dependent induction of the transcription factor, GADD153 and the BCL2-related protein BAK. Upstream events of fenretinide-induced signaling involve increased levels of ceramide as a result of increased sphingomyelinase activity, and the subsequent metabolism of ceramide to gangliosides via glucosylceramide synthase and GD3 synthase. These gangliosides may be involved in the regulation of 12-LOX leading to oxidative stress and apoptosis via the induction of GADD153 and BAK. The targeting of sphingomyelinases or downstream effectors such as 12-LOX or GADD153 may present novel approaches for the development of more effective and selective drugs for neuroblastoma therapy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/80772
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 37
social impact