Adoptive cell immunotherapy for human diseases, including the use of T cells modified to express an anti-tumour T-cell receptor (TCR) or chimeric antigen receptor, is showing promise as an effective treatment modality. Further advances would be accelerated by the availability of a mouse model that would permit human T-cell engineering protocols and proposed genetic modifications to be evaluated in vivo. NOD-scid IL2rγ(null) (NSG) mice accept the engraftment of mature human T cells; however, long-term evaluation of transferred cells has been hampered by the xenogeneic graft-versus-host disease (GVHD) that occurs soon after cell transfer. We modified human primary CD4(+) T cells by lentiviral transduction to express a human TCR that recognizes a pancreatic beta cell-derived peptide in the context of HLA-DR4. The TCR-transduced cells were transferred to NSG mice engineered to express HLA-DR4 and to be deficient for murine class II MHC molecules. CD4(+) T-cell-depleted peripheral blood mononuclear cells were also transferred to facilitate engraftment. The transduced cells exhibited long-term survival (up to 3 months post-transfer) and lethal GVHD was not observed. This favourable outcome was dependent upon the pre-transfer T-cell transduction and culture conditions, which influenced both the kinetics of engraftment and the development of GVHD. This approach should now permit human T-cell transduction protocols and genetic modifications to be evaluated in vivo, and it should also facilitate the development of human disease models that incorporate human T cells.

Genetically modified human CD4(+) T cells can be evaluated in vivo without lethal graft-versus-host disease

FOLLENZI, Antonia;
2016-01-01

Abstract

Adoptive cell immunotherapy for human diseases, including the use of T cells modified to express an anti-tumour T-cell receptor (TCR) or chimeric antigen receptor, is showing promise as an effective treatment modality. Further advances would be accelerated by the availability of a mouse model that would permit human T-cell engineering protocols and proposed genetic modifications to be evaluated in vivo. NOD-scid IL2rγ(null) (NSG) mice accept the engraftment of mature human T cells; however, long-term evaluation of transferred cells has been hampered by the xenogeneic graft-versus-host disease (GVHD) that occurs soon after cell transfer. We modified human primary CD4(+) T cells by lentiviral transduction to express a human TCR that recognizes a pancreatic beta cell-derived peptide in the context of HLA-DR4. The TCR-transduced cells were transferred to NSG mice engineered to express HLA-DR4 and to be deficient for murine class II MHC molecules. CD4(+) T-cell-depleted peripheral blood mononuclear cells were also transferred to facilitate engraftment. The transduced cells exhibited long-term survival (up to 3 months post-transfer) and lethal GVHD was not observed. This favourable outcome was dependent upon the pre-transfer T-cell transduction and culture conditions, which influenced both the kinetics of engraftment and the development of GVHD. This approach should now permit human T-cell transduction protocols and genetic modifications to be evaluated in vivo, and it should also facilitate the development of human disease models that incorporate human T cells.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/79316
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact