Recent studies have postulated a role for vitamin D and its receptor on cerebral function, and anti-inflammatory, immunomodulatory and neuroprotective effects have been described; vitamin D can inhibit proinflammatory cytokines and nitric oxide synthesis during various neurodegenerative insults, and may be considered as a potential drug for the treatment of these disorders. In addition, iron is crucial for neuronal development and neurotransmitter production in the brain, but its accumulation as catalytic form (Fe(3+)) impairs brain function and causes the dysregulation of iron metabolism leading to tissue damage due to the formation of toxic free radicals (ROS). This research was planned to study the role of vitamin D to prevent iron damage in neuroblastoma BE(2)M17 cells. Mechanisms involved in neurodegeneration, including cell viability, ROS production, and the most common intracellular pathways were studied. Pretreatment with calcitriol (the active form of vitamin D) reduced cellular injury induced by exposure to catalytic iron.
Protective effects of 1α,25-Dihydroxyvitamin D3 on cultured neural cells exposed to catalytic iron
UBERTI, FRANCESCA
;MORSANUTO, VeraCo-primo
;BARDELLI, Claudio;MOLINARI, Claudio Giuseppe
2016-01-01
Abstract
Recent studies have postulated a role for vitamin D and its receptor on cerebral function, and anti-inflammatory, immunomodulatory and neuroprotective effects have been described; vitamin D can inhibit proinflammatory cytokines and nitric oxide synthesis during various neurodegenerative insults, and may be considered as a potential drug for the treatment of these disorders. In addition, iron is crucial for neuronal development and neurotransmitter production in the brain, but its accumulation as catalytic form (Fe(3+)) impairs brain function and causes the dysregulation of iron metabolism leading to tissue damage due to the formation of toxic free radicals (ROS). This research was planned to study the role of vitamin D to prevent iron damage in neuroblastoma BE(2)M17 cells. Mechanisms involved in neurodegeneration, including cell viability, ROS production, and the most common intracellular pathways were studied. Pretreatment with calcitriol (the active form of vitamin D) reduced cellular injury induced by exposure to catalytic iron.File | Dimensione | Formato | |
---|---|---|---|
PHY2-4-e12769.pdf
file ad accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.